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In these notes, we introduce matrix Lie groups G and their Lie algebras
Lie(G), and we exhibit the (continuous) loop group LG as a smooth Banach Lie
group. Prerequisites are basic calculus and point set topology, but no knowledge
of differential geometry is presupposed. For this reason, the presentation of the
material is somewhat unconventional. Most importantly, the definition of matrix
Lie groups and their Lie algebras is different from - but ultimately equivalent
to - the usual definition in the literature [Hu72, DK00].

1 The loop space LM

Let (M,d) be a metric space. A path in M is a continuous map φ : [0, 1]→M .
A loop is a path which starts and ends in the same point, φ(0) = φ(1). If
we identify the endpoints of the interval [0, 1] with each other, we obtain the
circle S1. Since φ(0) = φ(1), we can think of a loop as a continuous map of
S1 into M . As the name suggests, the loop space LM of M is the space of all
loops,

LM = {φ : [0, 1]→M ; φ is continuous and φ(0) = φ(1)} .

The first aim is to have a closer look at LM .

2 Topology of loop spaces

First, we show that LM inherits from M the property of being a metric space.
A metric on M is a map d : M ×M → R≥0 with

d(x, y) = d(y, x) (symmetry) (1)

d(x, z) ≥ d(x, y) + d(y, z) (triangle inequality) (2)

d(x, y) = 0⇔ x = y (nondegeneracy) (3)

for all x, y, z ∈M . We define the metric d∞ on LM by

d∞(φ, χ) = sup
t∈[0,1]

d(φ(t), χ(t)) .

The following exercise shows that we can consider LM as a topological space in
its own right.
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Exercise 1. Check that d∞ is indeed a metric; show that the properties (1), (2),
and (3) for d∞ follow from the corresponding properties for d.

The loop space LM is sometimes called the free loop space, because a loop
φ : [0, 1] → M can start and end wherever it wants to. For any x ∈ M , the
based loop space ΩxM ⊆ LM is the subspace of loops which start and end at
the point x,

ΩxM = {φ ∈ LM ; φ(0) = π(1) = x} .

Another interesting subspace of LM is the space of constant loops.

Exercise 2. Consider the map M → LM that takes a point x to the constant
loop φ(t) = x. Show that this is an isometry of M onto the space of constant
maps.

In the following, we will therefore identify M ⊆ LM with the space of
constant maps.

Exercise 3. Show that the map ev0 : LM →M with ev0(φ) = φ(0) is continuous,
surjective, and that the preimage of x is the based loop space ev−1

0 (x) = ΩxM .
Use this to show that ΩxM is a closed subspace of LM .

3 Examples: LR and LS1

We can ask ourselves what the ‘shape’ of LM is. For example, is it connected?
Path connected? Simply connected? The answer, of course, depends rather
crucially on M .

Consider, for example, the case M = R. The loop space LR consists of
continuous functions φ : S1 → R.

Exercise 4. Show that LR and Ω0R are contractible (and hence in particular
connected and simply connected).

Already more interesting is the case M = S1. We consider S1 ' R/Z, and
equip S1 with the quotient metric d(θ, θ′) = min{|θ − θ′ − k| ; k ∈ Z}. (The
shortest distance along the circle.) It turns out that LS1 is neither connected
nor simply connected.

Exercise 5. Show that LS1 is homeomorphic to S1 × Ω0S
1. (Hint: to find a

homeomorphism LS1 → S1 × Ω0S
1, decompose φ ∈ LM into a constant loop

and a based loop.)

The winding number of a loop φ ∈ Ω0S
1 is the number of times it winds

around the circle. More formally, let ψ : [0, 1] → R be the unique continuous
lift of φ : [0, 1]→ R/Z with ψ(0) = 0 and φ(t) = ψ(t) modZ. Since φ(1) = 0 in
S1 ' R/Z, we have ψ(1) ∈ Z. We thus obtain a bijection

Ω0S
1 ' {ψ : [0, 1]→ R ; ψ is continuous, ψ(0) = 0, and ψ(1) ∈ Z}.

Then the winding number of φ is defined as k = ψ(1).

Exercise 6. Show that d∞(φ, φ′) = π if φ, φ′ ∈ Ω0S
1 have different winding

number. (Hint: use the mean value theorem.)
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In particular, Ω0S
1 is not connected; the sets Ω

(k)
0 S1 of loops with winding

number k are both open and closed. In fact, one can show that Ω
(k)
0 S1 is

contractible.

Exercise 7. Show that Ω
(k)
0 S1 is homeomorphic (but not isometric) to the set

{ψ : [0, 1]→ R ; ψ is continuous, ψ(0) = 0, and ψ(1) = k} ,

equipped with the metric d∞(ψ,ψ′) = supt∈[0,1]|ψ(t) − ψ′(t)|. Show that this

can be contracted to the function ψ(t) = kt. In particular, Ω
(k)
0 S1 is connected.

Show that Ω
(k)
0 S1 is homeomorphic to Ω0R. (Compare with exercise 4).

We conclude that LS1 is the disjoint union of connected components

LS1 ' tk∈ZS1 × Ωk0S
1 ,

each one homeomorphic to S1 × Ω0R.

4 Fundamental group

Since LM is a metric space, we can consider continuous paths in LM , and
ask whether LM is path connected. A path from φ0 ∈ LM to φ1 ∈ LM is a
continuous map Φ: [0, 1] → LM with Φ(0) = φ0 and Φ(1) = φ1. We already
saw that LR is connected, but LS1 is not.

The following exercise shows that continuous paths in LM correspond to
homotopies in M . A homotopy between φ0 : [0, 1] → M and φ1 : [0, 1] → M is
a continuous map F : [0, 1]× [0, 1]→M such that F (0, t) = φ0(t) and F (1, t) =
φ1(t).

Exercise 8. If Φ: [0, 1]→ LM is a path in LM , then we obtain a map F : [0, 1]×
[0, 1] → M by F (s, t) = Φ(s)(t). Show that Φ is continuous if and only if F is
continuous. (Hint: since [0, 1] is compact, Φ and F are continuous if and only
if they are uniformly continuous.)

Let π0(Y ) be the set of connected components of a topological space Y , and
let π1(Y, y) be the fundamental group of loops in Y that start and end in y,
where loops are identified if there exists a homotopy between them.

Exercise 9. Show that:

a) A path in LM from φ0 to φ1 corresponds to a homotopy with F (s, 0) =
F (s, 1) for all s ∈ [0, 1].

b) A path in ΩxM from φ0 to φ1 corresponds to a homotopy with F (s, 0) =
F (s, 1) = x for all s ∈ [0, 1].

c) There is a bijection
π0(ΩxM) ' π1(M,x) .

In particular, ΩxM is connected if and only if the connected component
of x in M is simply connected.
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Remark 1. This is the very simplest example of a general phenomenon called
transgression. Roughly speaking, ‘higher geometry’ of M (in this case π1(M),
to be thought of as ‘paths modulo surfaces’ in M) can be expressed as ‘lower
geometry’ of ΩM (in this case π0(M), to be thought of as ‘points modulo paths’
in ΩM).

For M = S1, we used the fact that LS1 = S1×Ω0S
1 to see that π0(LS1) =

π0(S1) × π0(Ω0S
1) = π1(S1). It turns out that we can do something similar if

M is a matrix Lie group.

5 Loop groups and matrix Lie groups

We denote the group of invertible n× n matrices over R by Gl(n,R). A matrix
Lie group is a closed subgroup G of Gl(n,R). Every matrix Lie group is a
metric space, with a metric inherited from the norm on the ambient space of
n×n matrices. In the remainder of these notes, we focus on loop groups, namely
loop spaces LG of a matrix group G.

5.1 The matrix Lie group SO(n,R)
We start by giving some examples of matrix Lie groups. The special orthogonal
group SO(n,R) is the group of transformations of Rn that preserve the metric
and the orientation,

SO(n,R) = {g ∈ Gl(n,R) ; det(g) = 1 and (g~v, g ~w) = (~v, ~w) ∀ ~v, ~w ∈ Rn} .
(4)

Exercise 10. Show that g ∈ SO(n,R) if and only if det(g) = 1 and gT g = 1.
Conclude that SO(n,R) is closed in Gl(n,R), and hence a matrix Lie group.

The following exercise shows that SO(2) is just a fancy name for the circle
group S1.

Exercise 11. Write g ∈ SO(2) as g =
(
a b
c d

)
, and show that the vectors ( ac ) and(

b
d

)
in R2 are orthonormal. Use this to show that every g ∈ SO(2) is of the

form

g(φ) =

(
cos(φ) sin(φ)
− sin(φ) cos(φ)

)
(5)

for some φ ∈ R.

The parametrisation φ 7→ g(φ) ‘winds the real line around the circle’. Al-
though it is injective only for small values of φ, say φ ∈ (−π, π), it is very useful
because it yields a homeomorphism φ 7→ g(φ) between the open neighbourhood
U0 = (−π, π) of 0 in R and the open neighbourhood V1 = SO(2)\{−1} of 1 in
SO(2).

Exercise 12. The open neighbourhood V1 ⊆ SO(2) is contractible. Show that
this gives rise to a contractible neighbourhood LV1 of 1 in LSO(2), homeomor-
phic to the open neighbourhood LU0 of 0 in LR.
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Let g ∈ SO(2). Since V1 is an open neighbourhood of 1, and since left
multiplication by g is continuous, the set g · V1 is an open neighbourhood of g
in SO(2).

Exercise 13. Show that every loop φ0 ∈ LSO(2) has a contractible neighbour-
hood homeomorphic to LU0.

This has far-reaching consequences: it means that the space LSO(2), which
is itself topologically quite interesting, can be covered by ‘patching together’
contractible open subsets of the Banach space LR. We will get back to this
point in greater detail later on, after we find good ‘parametrisations’ around
the identity for arbitrary matrix Lie groups.

5.2 The classical Lie groups

Let Gl(n,C) be the group of all invertible complex n × n matrices. To show
that Gl(n,C) is a matrix Lie group, consider it as a subgroup of Gl(2n,R) by
identifying X+iY ∈ Gl(n,C) with the real 2n×2n matrix

(
X Y
−Y X

)
∈ Gl(2n,R),

where X and Y are real n× n-matrices.

Exercise 14. Show that this is a group homomorphism. Show that it is injective
with closed image, and conclude that Gl(n,C) is a matrix Lie group.

Note that every closed subgroup of a matrix Lie group is again a matrix Lie
group. In particular, closed subgroups of Gl(n,C) are matrix Lie groups.

Exercise 15. The groups of n× n matrices over R or C with determinant 1 are
denoted by Sl(n,R) or Sl(n,C), respectively. Show that these are matrix Lie
groups.

In practice, examples of matrix Lie groups are often derived from bilinear or
sesquilinear forms.

Exercise 16. Let B be an n×n matrix over R, and let b(~v, ~w) = (~v,B ~w) be the
corresponding bilinear form. Show that

O(B,R) = {g ∈ Gl(n,R) ; b(g~v, g ~w) = b(~v, ~w) ∀ ~v, ~w ∈ Rn}

is a matrix Lie group.

Since intersections of closed groups are closed, we find that SO(B,R) =
O(B,R) ∩ Sl(n,R) is a matrix Lie group. We find back SO(n,R) as SO(B,R)
with B = 1. If B = Ω is a nondegenerate skew symmetric matrix of rank
n = 2m, then Sp(m) = SO(Ω,R) is called the symplectic group.

Exercise 17. Let B be an n × n matrix over C. Let b(~v, ~w) = (~v,B ~w) be the
corresponding bilinear form, and let h(~v, ~w) = 〈~v,B ~w〉 be the sesquilinear form.
Show that

O(B,C) = {g ∈ Gl(n,C) ; b(g~v, g ~w) = b(~v, ~w) ∀ ~v, ~w ∈ Cn} and

U(B) = {g ∈ Gl(n,C) ; h(g~v, g ~w) = h(~v, ~w) ∀ ~v, ~w ∈ Cn}

are matrix Lie groups. (Hint: show that gTBg = B and g∗Bg = B are closed
expressions.)
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It follows from exercise (17) and (15) that SO(B,C) = O(B,C) ∩ Sl(n,C)
and SU(B) = U(B)∩ Sl(n,C) are also matrix Lie groups. If B = 1 is the n× n
identity matrix, then we denote SO(B,C) and SU(B) by SO(n,C) and SU(n),
respectively.

We have a closer look at the group SU(n) of unitary n × n matrices with
determinant 1.

Exercise 18. The group SU(n) is compact. (Hint: what is the length of the
matrix g ∈ SU(n) with respect to the hermitean inner product 〈X,Y 〉 = tr(X∗Y)
on Mn(C)?)

Exercise 19. Show that SU(2) is homeomorphic to S3, for example in the fol-
lowing way:

a) The orbit map SU(2) 7→ C2 given by g 7→ g ( 1
0 ) is continuous and injective.

b) Its image is S3 ' {v ∈ C2 ; ‖v‖ = 1}.

c) By the previous exercise, the orbit map SU(2)→ S3 is continuous from a
compact space to a Hausdorff space.

5.3 Loop groups as topological groups

The loop space LG of a matrix Lie group G is called a loop group.

Exercise 20. Show that the multiplication (φ ·φ′)(t) = φ(t)φ′(t) makes LG into
a group. What is the identity element? What is the inverse of φ ∈ LG?

The group Gl(n,R) is a topological group, meaning that the multiplication
Gl(n,R)×Gl(n,R)→ Gl(n,R) : (g, h) 7→ gh and the inversion map Gl(n,R)→
Gl(n,R) : g 7→ g−1 are continuous. It follows that every matrix Lie group is also
a topological group.

Exercise 21. Show that if G is a compact matrix Lie group, then LG is a
topological group. (Hint: since G is compact, the multiplication µ : G×G→ G
and inversion ι : G→ G are uniformly continuous.)

This result remains valid also for noncompact matrix groups, although the
proof is a bit more involved.

Proposition 1. Every loop group LG is a topological group.

Proof. We show that multiplication LG×LG→ LG is continuous. Let φ0, χ0 ∈
LG. For every ε > 0, we need to find a δ, δ′ > 0 such that d∞(φ, φ0) ≤ δ and
d∞(χ, χ0) ≤ δ′ imply d∞(φχ, φ0χ0) ≤ ε.

The idea is to show that everything of interest happens in a compact subset
K(φ0) × K(χ0) ⊆ G × G. Since multiplication and inversion are uniformly
continuous on this compact subset, we can then proceed as in exercise (21).

Let Z = {A ∈ Mn(R) ; det(A) = 0} be the complement of Gl(n,R) in
Mn(R). Note that φ0(S1) ⊆ Mn(R) is compact as the image of a compact set,
and hence closed and bounded. Since φ0(S1) and Z are closed and disjoint,
their distance ∆ = d(φ0(S1), Z) is nonzero. Let

K(φ0) = {A ∈Mn(R) ; d(A, φ0(S1)) ≤ ∆/2} .
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Note that K(φ0) is closed, and it is bounded because φ0(S1) is bounded. It
follows that K(φ0) ⊆ Mn(R) is compact. Since d(K(φ0), Z) ≥ ∆/2 by the
triangle inequality, we have K(φ0) ∩ Z = ∅. It follows that the compact set
K(φ0) is a subset of Gl(n,R). If d∞(φ, φ0) ≤ ∆/2, then for all t ∈ [0, 1],
d(φ(t), φ0(t)) ≤ ∆/2, and hence φ(t) ∈ K(φ0).

By choosing δ ≤ ∆/2, we can thus ensure that φ : [0, 1] → G maps into
K(φ0). Similarly, by choosing δ′ ≤ ∆′/2, we can ensure that χ0 : [0, 1] → G
maps into a compact neighbourhood K(χ0) of χ0(S1) in G.

Since multiplication µ : G×G→ G is continuous, it is uniformly continuous
on the compact set K(φ0) × K(χ0) ⊆ G × G. In other words, there exist
D,D′ > 0 such that d(g, g′) < D and d(h, h′) < D′ imply d(gg′, hh′) < ε for all
(g, h), (g′, h′) in K(φ0)×K(χ0).

Choose δ = min(∆/2, D) and δ′ = min(∆′/2, D′). If d∞(φ, φ0) ≤ δ and
d∞(χ, χ0) ≤ δ′, then one has d(φ(t), φ0(t)) ≤ δ and d(χ(t), χ0(t)) ≤ δ′ for all
t ∈ S1. This implies that φ(t) and φ0(t) are in K(φ0), and χ(t) and χ0(t)
are in K(χ0), for all t ∈ [0, 1]. By uniform continuity of the multiplication on
K∆, we thus find d(φ(t)χ0(t), φ0(t)χ0(t)) < ε for all t ∈ S1. This means that
d∞(φχ, φ0χ0) < ε.

The proof for continuity of the inversion map proceeds in a similar way,
using uniform continuity of the inversion on K(φ0).

Exercise 22. Show that LG is homeomorphic to G× Ω1G. Conclude that

π0(LG) ' π0(G)× π1(G,1) .

(Hint: decompose φ ∈ LG into a constant loop and a based loop. To show that
this decomposition and its inverse are continuous, use exercises (2) and (3), and
continuity of the multiplication in LG.)

6 Lie algebras

In exercise (11), we saw that the map R→ SO(2) defined by

φ 7→ g(φ) =

(
cos(φ) sin(φ)
− sin(φ) cos(φ)

)
is locally a homeomorphism, so we can use it to parametrise a neighbourhood
of the identity in SO(2). In order to generalise this parametrisation to other
matrix Lie groups, we reinterpret it as the exponential map.

Exercise 23. Calculate exp
(

0 φ
−φ 0

)
, where the exponential of a matrix X is

given by exp(X) = 1 +X + 1
2!X

2 + 1
3!X

3 + . . .

If we define the linear subspace so(2) ⊆M2(R) by

so(2) :=

{(
0 φ
−φ 0

)
; φ ∈ R

}
,

then we can identify the parametrisation φ 7→ g(φ) of equation (5) with the
exponential map exp: so(2)→ SO(2).
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6.1 The Lie algebra so(n,R)
This is the picture that carries over to SO(n,R). In the following exercise, we
will see that there exists a biggest linear subspace so(n,R) ⊆Mn(R), called the
Lie algebra of SO(n,R), such that the exponential map exp: Mn(R)→ Gl(n,R)
maps so(n,R) into SO(n,R).

Exercise 24. Let so(n,R) ⊆ Mn(R) be the biggest linear subspace of Mn(R)
such that exp(so(n,R)) ⊆ SO(n,R).

a) If X ∈ so(n,R), then XT + X = 0. (Hint: we know that exp(tX) ∈
SO(n,R) for all t ∈ R. Now differentiate at t = 0.)

b) If XT + X = 0, then exp(X) ∈ SO(n,R). (Hint: to show that exp(X) is
orthogonal, one can use that exp(X)T = exp(XT ). For the determinant
condition, note that det(g) = ±1 for every orthogonal matrix g. Now use
the fact that t 7→ det(exp(tX)) is continuous.)

c) Show that so(n,R) = {X ∈Mn(R) ; XT +X = 0} is a linear subspace of
Mn(R), and conclude that it is the Lie algebra of SO(n,R).

Later on, we will see that exp gives a homeomorphism between an open
neighbourhood U0 of 0 in so(n,R) and an open neighbourhood V1 of 1 in
SO(n,R). This means that we can parametrise an open neighbourhood of
SO(n,R) with an open neighbourhood of the vector space so(n,R).

Exercise 25. What is the dimension d of so(n,R)? This is the number of pa-
rameters needed to parameterise a neighbourhood of SO(n,R).

Exercise 26. If X,Y ∈ so(n,R), then the commutator [X,Y ] = XY − Y X is
again an element of so(n,R).

6.2 The Lie algebras gl(n,C) and su(n)

Exercise 27. Let gl(n,C) ⊆M2n(R) be the Lie algebra of Gl(n,C), namely the
biggest linear subspace such that exp(gl(n,C)) ⊆ Gl(n,C).

a) Show that gl(n,C) = {
(
X Y
−Y X

)
; X,Y ∈Mn(R)}.

b) Check that the natural inclusion of Mn(C) in M2n(R) by X + iY 7→(
X Y
−Y X

)
is an algebra homomorphism. Conclude that the commutator

bracket and exponential map on Mn(C) agree with those on M2n(R).

This allows us to consider gl(n,C) 'Mn(C), with exp: gl(n,C)→ Gl(n,C)
the complex exponential.

Exercise 28. Let su(n) be the Lie algebra of SU(n), namely the biggest linear
subspace of Mn(C) such that exp(su(n)) ⊆ SU(n). Show that

su(n) = {X ∈Mn(C) ; tr(X) = 0, and X∗ +X = 0} .

(Hint: recall that g ∈ SU(n) if det(g) = 1 and g∗g = 1. Now have another look
at Exercise 24. For the trace condition, note that X∗ + X = 0 implies that X
is diagonalisable.)

Exercise 29. What are the Lie algebras of O(B,C) and U(B)? And for SO(B,C)
and SU(B)?
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6.3 Lie algebras of matrix Lie groups

Definition 1. The Lie algebra Lie(G) ⊆ Mn(R) of a matrix Lie group G ⊆
Mn(R) is the biggest linear subspace of Mn(R) such that exp(Lie(G)) ⊆ G.

We will see that the vector space Lie(G) is closed closed under the commu-
tator bracket [X,Y ] = XY − Y X, which explains the ‘algebra’ in ‘Lie algebra’.
In the process, we will prove the following convenient characterisation:

Lie(G) = {X ∈Mn(R) ; exp(tX) ∈ G∀ t ∈ R} . (6)

Finally, we will show that the exponential map yields a homeomorphism be-
tween an open neighbourhood of 0 in the vector space Lie(G) and an open
neighbourhood of 1 in G.

Lemma 2. For X,Y ∈Mn(R), we have

exp(X + Y ) = lim
k→∞

(exp(X/k) exp(Y/k)
)k

(7)

exp([X,Y ]) = lim
k→∞

(
exp(X/k) exp(Y/k) exp(−X/k) exp(−Y/k)

)k2
. (8)

Proof. The expression in the brackets of (7) and (8) can be expanded as

exp(X/k) exp(Y/k) = 1 + (X + Y )/k +O(k−2) ,

exp(X/k) exp(Y/k) exp(−X/k) exp(−Y/k) = 1 + [X,Y ]/k2 +O(k−3) .

The above formulæ then follow from the fact that limk→∞(1 +A/k+B(k))k =
exp(A) for every matrix A ∈ Mn(R), and for every sequence B(k) of matrices
with limk→∞ k‖B(k)‖ = 0.

Theorem 3. The Lie algebra of a matrix group G is given by

Lie(G) = {X ∈Mn(R) ; exp(tX) ∈ G∀ t ∈ R} . (9)

It is closed under the commutator bracket; if X,Y ∈ Lie(G), then [X,Y ] =
XY − Y X is also in Lie(G).

Proof. Temporarily denote the r.h.s. of (9) by lie(G). Clearly, every linear
subspace V ⊆ Mn(R) with exp(V ) ⊆ G satisfies V ⊆ lie(G). To show that
lie(G) is the Lie algebra of G, it therefore suffices to show that it is a vector
space.

By definition, lie(G) is closed under scalar multiplication. To show that
it is closed under addition, suppose that X,Y ∈ lie(G). Then exp(X/k) and
exp(Y/k) are in G by definition. Since G is a group, (exp(X/k) exp(Y/k))k ∈ G,
and since G is closed, (7) shows that exp(X + Y ) is in G. Since the same holds
for all scalar multiples of X and Y , this implies that X+Y ∈ lie(G). In the same
way, one uses equation (8) to show that lie(G) is closed under the commutator
bracket, [X,Y ] ∈ lie(G) for all X,Y ∈ lie(G).

Theorem 4 (Von Neumann). There exists a neighbourhood U0 ⊆ Lie(G) of
zero such that exp(U0) ⊆ G is a neighbourhood of 1 in G, and the exponential
map defines a homeomorphism exp: U0

∼−→ exp(U0).
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Proof. We show that exp(Lie(G)) ⊆ G is a neighbourhood of 1. Define the
inner product (A,B) = tr(ATB) on Mn(R), and let Lie(G)⊥ be the orthogonal
complement of Lie(G) in Mn(R). Let E : Mn(R)→Mn(R) be the smooth map
defined by E(X+Y ) = exp(X) exp(Y ) for X ∈ Lie(G) and Y ∈ Lie(G)⊥. Since
its derivative at 0 is the identity, it is a local diffeomorphism around 0 by the
inverse function theorem.

Suppose that 1 is not in the interior of exp(Lie(G)) ⊆ G. Then there exists a
sequence gk in G \ exp(Lie(G)) with limk→∞ gk = 1. For k sufficiently large, we
can write gk = exp(Xk) exp(Yk) with Xk ∈ Lie(G), Yk ∈ Lie(G)⊥, Xk, Yk → 0,
and Yk 6= 0. As gk and exp(Xk) are in G, we also have exp(Yk) ∈ G. Passing to
a subsequence if necessary, we use compactness of the unit sphere in Lie(G)⊥

to show that Yk/‖Yk‖ → Y for some Y ∈ Lie(G)⊥ of norm one. For any t ∈ R,
choose integers nk such that nk‖Yk‖ → t. Then exp(nkYk) → exp(tY ), and
exp(tY ) lies in G by continuity. Since this holds for every t ∈ R, we conclude
that Y ∈ Lie(G), contradicting the assumption.

7 Matrix Lie groups as manifolds

Definition 2. A Hausdorff topological space M is called a topological manifold
of dimension d if every point x has a neighbourhood Vx homeomorphic to an
open subset Ux ⊆ Rd. A homeomorphism κx : Vx → Ux is called a chart, and
Vx is called a coordinate neighbourhood of x.

Corollary 5. Every matrix Lie group G is a topological manifold of dimension
d = dim(Lie(G)).

Proof. We coverG by open neighbourhoods Vg = g exp(U0), where g runs overG
and U0 ⊆ Lie(G) ' Rd is as in Theorem 4. The chart κ : Vg → U0, given by the
inverse of κ−1(X) = g exp(X), is a homeomorphism, since both the exponential
map and left multiplication by g are (locally) homeomorphisms.

If M is a topological manifold and Vx, Vy ⊆ M are two open subsets with
nonzero intersection, then the transition function

κy ◦ κ−1
x : Ux ∩ κ−1

x (Vy)→ κ−1
y (Vx) ∩ Uy

is a homeomorphism. Since the transition functions κ−1
x ◦ κy are maps between

open subsets of Rd, it makes sense to ask whether or not they are smooth. A
topological manifold is called a smooth manifold if this is the case.

Definition 3. A smooth manifold is a topological manifold, equipped with dis-
tinguished charts κx : Ux → Vx such that all transition functions are smooth.

Corollary 6. Every matrix Lie group is a smooth manifold.

Proof. Since the map exp: Mn(R) → Mn(R) has D exp |0 = 1, it is local dif-
feomorphism between an open neighbourhood U0 of 0 and an open neighbour-
hood V1 = exp(U) of 1 by the inverse function theorem. Denote its local
inverse by log : V1 → U0. If Ug ∩ Uh is nonempty, and κg(X) = κh(Y ), then
g exp(X) = h exp(Y ) yields Y = log(h−1g exp(Y )) = κ−1

h ◦ κ(g)(X). Since the
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logarithm and left multiplication by h−1g are both smooth, this is a smooth
transition function.

If M and M ′ are smooth manifolds, and f : M → M ′ is a continuous map
with f(x) = y, then there exist open coordinate neighbourhoods Vx ⊆ M of x
and Vy ⊆M ′ of y such that f restricts to a map f : Vx → V ′y . Using the charts

κx : Vx → Ux and κ′y : V ′y → U ′y, we identify Vx with Ux ⊆ Rd and V ′y with

U ′y ⊆ Rd′ . We thus obtain a continuous map

f̃ : Ux → Uy, f̃ = κ′y ◦ f ◦ κ−1
x .

Since this is a map from an open subset of Rd to an open subset of Rd′ , it makes
sense to ask whether it is smooth or not.

Definition 4. A continuous map f : M →M ′ is called smooth if for every x ∈M ,
there exist coordinate neighbourhoods such that f̃ : Ux → Uy is smooth.

Exercise 30. Check that smoothness of the transition maps implies that the
above condition is independent of the choice of charts.

Exercise 31. If M and M ′ are smooth manifolds, then the product M ×M ′ is
a smooth manifold.

Definition 5. A Lie group is a group G with the structure of a smooth manifold,
such that multiplication µ : G×G→ G and inversion ι : G→ G are smooth.

Exercise 32. In view of Corollary 6, every matrix Lie group G is a smooth
manifold. Prove that multiplication and inversion are smooth maps.

Corollary 7. Every matrix Lie group is a Lie group.

8 Loop groups as topological Banach manifolds

A topological manifold is a topological space that is locally homeomorphic to
the finite dimensional vector space RN . Clearly, expecting φ0 ∈ LG to have
an open neighbourhood homeomorphic to an open neighbourhood in RN is too
much to ask for. Something else is true though: every φ0 ∈ LG has an open
neighbourhood homeomorphic to an open neighbourhood in LRd, where d is
the dimension of the Lie algebra Lie(G).

Proposition 8. Every φ0 ∈ LG has a neighbourhood φ0 · LV1 that is homeo-
morphic to LU0 ⊆ LLie(G), where U0 ⊆ Lie(G) is an open neighbourhood of 0.
The homeomorphism

κφ0 : Lie(G) ⊇ LU0 → φ0 · LV1 ⊂ LG

is given by κφ0(ξ)(t) = φ0(t) exp(ξ(t)).

Proof. Since U0 ⊆ Lie(G) is homeomorphic to V1 ⊆ G, the set LU0 ⊆ LLie(G)
is homeomorphic to LV1 ⊆ LG. We show that LV1 is an open neighbourhood
of 1 in LG.

11



Since V1 is an open neighbourhood of 1, there exists a δ > 0 such that
d(g,1) < δ implies g ∈ V1. Now if d∞(φ,1) < δ, then d(φ(t),1) < δ, hence
φ(t) ∈ V1, for all t ∈ [0, 1]. Thus d∞(φ,1) < δ implies φ ∈ LV1. The proof
that LU0 is an open neighbourhood of 0 in Lie(G) is similar. Since LG is a
topological group, the map φ 7→ φ0 · φ is a homeomorphism LG → LG. It
follows that φ0LV1 is an open neighbourhood of φ0 ∈ LG.

The space L(Lie(G)) ' LRd is a Banach space. If you can’t have finite
dimensional vector spaces, then Banach spaces are the next best thing.

Definition 6. A Banach space F is a vector space with a norm ‖ · ‖ : F → R≥0

such that F is complete; every Cauchy sequence fn converges in F .

Exercise 33. Show that LRd, equipped with the norm ‖φ‖∞ = supt∈[0,1] ‖φ(t)‖,
is a Banach space.

(Step 1: prove that for every t, limk→∞ φk(t) = φ(t) exists. Step 2: prove
that ‖φ−φk‖∞ → 0. For this, write φ−φn = (φ−φm) + (φm−φn). Bound the
second term by ε/2 for m,n > N . Write the first term as limk→∞ φk − φm and
bound by ε/2 as well. Step 3: show that φ is continuous by an ε/3-argument
with φ(t), φ(t′), φn(t) and φn(t′). Use that φn is uniformly continuous on the
compact set [0, 1].)

Since a Banach space is the next best thing to a finite dimensional vector
space, a Banach topological manifold is the next best thing to a topological
manifold.

Definition 7. A Banach topological manifold M is a topological Hausdorff space
that is locally homeomorphic to a Banach space F ; every point φ ∈ M has an
open neighbourhood Vφ that is homeomorphic to a neighbourhood Uφ in F .

Again, these open neighbourhoods Vφ ⊆M are called coordinate neighbour-
hoods, and the homeomorphisms κφ : Vφ → Uφ are called charts. By Proposi-
tion 8, every point φ0 ∈ LG has a neighbourhood homeomorphic to the open
neighbourhood LU in the Banach space L(Lie(G)) ' LRd. It follows that LG
is a topological Banach manifold.

Corollary 9. For any matrix Lie group G, the topological group LG is a topo-
logical Banach manifold.

9 Loop groups as Banach Lie groups

A smooth manifold is a topological manifold such that the transition maps
U → U ′ between the open subsets of Rd are smooth. To define smooth Banach
manifolds, we therefore need to define what smooth maps between (open subsets
of) Banach spaces are. There are several ways to do this. The following is based
on the notion of partial derivatives.

Definition 8. Let F, F ′ be Banach spaces, and let U ⊆ F be an open neighbour-
hood. A continuous map T : U → F ′ is called differentiable at f ∈ U if there
exists a (necessarily unique) bounded linear map DfT : F → F ′ such that

DTf (h) := lim
h→0

T (f + h)− T (f)

ε
.
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It is C1 if the derivative DT : U × F → F ′ is continuous. The map T is Cn if
DT is Cn−1, and it is smooth if it is Cn for all n ∈ N.

Exercise 34. Check that for F = Rn and F ′ = Rm, this gives back the usual
notion of smooth maps.

We have a closer look at maps of the form

Tτ : LRn → LRm, Tτ (f)(t) = τt(f(t)) , (10)

where τ : [0, 1]× Rn → Rm is a periodic map; τ(0, x) = τ(1, x) for all x ∈ Rn.

Exercise 35. Suppose that for all t ∈ [0, 1], the map τt : Rn → Rm is C1, and
suppose that the first derivatives of τt in the x-direction are continuous in t as
well as x. Let U ⊆ Rn be a bounded, open set. Show that on [0, 1] × U , the
derivatives of τt in the x-direction are bounded by a constant K1 which does
not depend on t or x. Show that the map Tτ is continuous.

Exercise 36. In the situation of exercise (35), suppose that for each t ∈ [0, 1], the
map τt : Rn → Rm is C2, with first and second derivatives in the x-direction that
are continuous in t as well as x. Show that on the bounded open set [0, 1]× U ,
the second derivatives of τt in the x-direction are bounded by a constant K2

which does not depend on t or x.

a) For f, h ∈ LRn, choose a bounded open set U ⊆ Rn that contains the
image of f + εh for all 0 ≤ ε ≤ 1. Use the taylor series to show that for
every t ∈ [0, 1],

τt(f(t) + εh(t))− τt(f(t))

ε
= D|f(t)τt · h(t) + εR(t) ,

with remainder |R(t)| ≤ K2h
2(t). Conclude that DTf (h) ∈ LRm is the

loop given by t 7→ (D|f(t)τt) · h(t).

b) Show that DT : LRn × LRn → LRm is of the form Tτ̃ for the continuous
map

τ̃ : [0, 1]× Rn × Rn → Rm , τ̃t(x, y) = D|xτt · y .
Show that the first derivatives of τ̃t(x, y) in the x and y-direction are
continuous. Use exercise (35) to conclude that DT is continuous, and
hence that T is C1.

Exercise 37. Suppose that for every t ∈ [0, 1], the map τt : Rn → Rm is smooth.
Suppose that all partial derivatives are continuous in t as well as x. Show that
the map Tτ : LRn → LRm of equation (10) is smooth.

Exercise 38. Check that the transition functions for the topological Banach
manifold LG are of the type discussed in exercise (37). Conclude that LG is a
smooth Banach manifold.

The definition of smooth maps between smooth Banach manifolds is com-
pletely analogous to the case of finite dimensional smooth manifolds. A contin-
uous map T : M → M′ is called smooth if for every φ ∈ M, there exist open
coordinate neighbourhoods Vφ ⊆M of φ and V ′T (φ) ⊆M′ of T (φ) such that

T̃ : Uφ → U ′T (φ) , T̃ = κ′T (φ) ◦ T ◦ κ
−1
φ
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is smooth.

Exercise 39. Show that the concatenation of smooth maps between Banach
spaces is smooth. Conclude that the above definition is independent of the
choice of charts.

A Banach Lie group is a group G with the structure of a smooth Banach
manifold, such that multiplication µ : G × G → G and inversion ι : G → G are
smooth.

Theorem 10. The loop group LG is a Banach Lie group.

Proof. identify the neighbourhood φ · LV1 of φ ∈ LG with the neighbourhood
LU0 of 0 ∈ L(Lie(G)) by the inverse chart LU0 3 X 7→ φt exp(X) ∈ φ ·LV1. To
show smoothness of the inversion ι : φ · LV1 → φ−1 · LV ′1, identify it with the
map LU ′0 → LU0 given by

Xt 7→ log(φt exp(−Xt)φ
−1
t )

and apply exercise (37). (If necessary, choose U ′0 sufficiently small for the image
of LU ′0 to land in LU0.) To show smoothness of the multiplication, note that
the open set φ · LV1 × ψ · LV1 is a neighbourhood of (φ, ψ) in the smooth
Banach manifold LG × LG ' L(G × G). Using the above charts, identify the
multiplication µ : φ · LV ′1 × ψ · LV ′1 → φψ · LV1 with

LU ′0 × LU ′0 → LU0 , (Xt, Yt) 7→ log(ψ−1
t exp(Xt)ψt exp(Yt))

in the coordinate charts. Again, apply the result of exercise (37).

10 Outlook

The main advantage of smooth manifolds over topological spaces is that the
machinery of differential calculus becomes available. This can be used, for
example, to compute extrema of smooth functions f : M → R, or to do Morse
theory.

Large parts of this powerful machinery carry over to smooth Banach man-
ifolds, making them much more amenable to analysis than other topological
spaces. For example, an elegant proof of the fact that π2(G) = {0} for compact
Lie groups G can be given by translating this to π1(Ω1G) = {0}, which in turn
can be proven by constructing a suitable cell decomposition of the loop space
[PS86, Corr. 8.6.7].

There are other notions of ‘infinite dimensional manifolds’ which support
a form of differential calculus. Particularly useful is the concept of Fréchet
manifolds, which are locally homeomorphic to Fréchet spaces. For example,
the smooth loop group C∞(S1, G) is a Fréchet Lie group, meaning that it is
a Fréchet manifold with smooth multiplication and inversion. Although this is
just a variation on the continuous loop group LG, it has a radically different
(and much richer) representation theory.

There are also Fréchet Lie groups which do not have ‘Banach siblings’. For
example, if M is a compact smooth manifold, then the group Diff(M) of diffeo-
morphisms is a Fréchet Lie group that locally looks like Vec(M), the Lie algebra
of smooth vector fields on M .

14



References

[Hu72] James E. Humphreys, Introduction to Lie algebras and Representation
Theory, Springer-Verlag, New York Heidelberg Berlin (1972). ISBN 0-
387-90052-7.

[DK00] Hans Duistermaat an Joop Kolk, Lie groups, Universitext. Springer,
Berlin, (2000).

[PS86] Andrew Pressley, Graeme Segal, Loop Groups, The Clarendon Press
Oxford University Press, New York, (1986).

15


