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Abstract

The projective and injective norms are extreme ones among natural tensor
products of normed spaces. An obvious question is: How much do they differ?
This question was considered by Grothendieck and Pisier (in the 1950s and
1980s), but - surprisingly - no quantitative analysis of the finite-dimensional case
was ever made. As explained in the talk of G. Aubrun, this last question comes up
naturally in the context of generalized probabilistic theories (GPTs) and XOR
games, where it can be restated as: How powerful are global strategies compared
to local ones?

We will show that the discrepancy between the projective and injective norms on
a tensor product of two finite-dimensional normed spaces E and F is always
lower-bounded by the power of the (smaller) dimension, with the exponent
depending on the generality of the setup (e.g., E = F or dim E = dim F ). Some
of the results are essentially optimal, but other can be likely improved. The
methods involve a wide range of techniques from geometry of Banach spaces and
random matrices.

Joint work with G. Aubrun, L. Lami, C. Palazuelos, A. Winter.
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Outline

• projective and injective tensor norms: definitions, notation

• historical background; the infinite dimensional case; qualitative vs.
quantitative

• a selection of discrepancy results and examples of tools from geometric
functional analysis

Buzzwords : Dvoretzky-Milman’s theorem; p-summing norms;
Chevet-Gordon’s inequality; Grothendieck’s inequality; K -convexity & the
MM∗-estimate
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Commercial break: Alice and Bob Meet Banach

G. Aubrun and S. Szarek, Alice and Bob Meet Banach. The interface
between Asymptotic Geometric Analysis and Quantum Information Theory.
Mathematical Surveys and Monographs, American Mathematical Society,
October 2017

And here is a comic strip (created by A. Garnier) that comes from the
book, samples of which are available via the authors’ web pages.
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Alice and Bob Meet Banach (1)
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Alice and Bob Meet Banach (2)
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Alice and Bob Meet Banach (3)
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Definitions and notation : the projective norm

If X ,Y are real Banach spaces, we will consider norms on X ⊗ Y (the
algebraic tensor product) verifying

‖x ⊗ y‖ = ‖x‖ · ‖y‖. (1)

By the triangle inequality, every such norm must satisfy

‖z‖ 6 min

{∑
i

‖xi‖ · ‖yi‖ : z =
∑
i

xi ⊗ yi

}
(2)

and replacing “6” by “..=” in (2) we get the definition of the projective
tensor norm ‖z‖X⊗πY , the largest norm on X ⊗ Y verifying (1), also
denoted sometimes by ‖z‖X ⊗̂Y . We will usually write simply ‖z‖π.
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Definitions and notation : duality and the injective norm

For the smallest “reasonable” norm on X ⊗ Y it is most convenient to
appeal to duality: if x∗ ∈ X ∗, y∗ ∈ Y ∗, we want x∗ ⊗ y∗ to induce a
functional on X ⊗ Y whose norm is ‖x∗‖ · ‖y∗‖, which implies

‖z‖ > max {(x∗ ⊗ y∗)(z) : ‖x∗‖ 6 1, ‖y∗‖ 6 1} . (3)

Again, replacing “>” by “..=” in (3) we get the definition of injective tensor
norm ‖z‖X⊗εY (or simply ‖z‖ε), denoted sometimes by ‖z‖X ⊗̌Y . Finally,
observe that ‖z‖ε is also the norm of z as a bilinear form on X ∗ × Y ∗.

An equivalent way to relate these two notions (at least in the finite
dimensional case) is

X ⊗ε Y = (X ∗ ⊗π Y ∗)∗ .

If the spaces are infinite dimensional, completions are required and there
are reflexivity issues, but we will largely ignore this side of the story and –
unless explicitly stated otherwise – will assume that dim X , dim Y <∞.
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An equivalent language: tensor products of convex sets

In geometric functional analysis, we often identify norms on a finite
dimensional vector space V with symmetric convex bodies:

X = (V , ‖ · ‖) → BX
..= {x : ‖x‖ 6 1} = the unit ball of X (4)

V ⊃ K → ‖x‖K ..= inf{t > 0 : x ∈ tK} = the Minkowski functional of K

In this setting we define the projective tensor product as

K ⊗π L ..= conv{x ⊗ y : x ∈ K , y ∈ L}

and the previous definitions can be restated as

BX⊗πY
..= BX ⊗π BY and BX⊗εY

..= (BX∗ ⊗π BY ∗)
◦ ,

where K ◦ ..= {x ∈ V ∗ : ∀y ∈ K 〈y , x〉 6 1} is the polar of K .

Since the operations (4) are order reversing, the largest tensor norm
corresponds to the smallest tensor product of sets and vice versa.
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Considering operators rather than tensors

Since X ∗ ⊗ Y is canonically isomorphic to L(X ,Y ), it is also possible to
avoid talking about tensors and rephrase all questions in terms of
operators. In that setting, if z =

∑
i |yi 〉〈x∗i |, then

‖z‖ε = ‖z : X → Y ‖,

the operator norm, while ‖z‖π = min
∑

i ‖yi‖ · ‖x∗i ‖ (the minimum over all
representations) is the nuclear norm. Moreover, appealing to duality we
have

‖z‖π = max
‖w :Y→X‖61

tr wz .

This allows to analyze both concepts in terms of operator norms, which
are arguably conceptually simpler. In particular

ρ(X ,Y ) ..= max
z∈X⊗Y , z 6=0

‖z‖π
‖z‖ε

= max
‖w :Y→X∗‖61, ‖z:X∗→Y ‖61

tr wz .
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Grothendieck and Pisier

Tensor products of normed spaces were studied in detail by Grothendieck
in 1950s. In particular, he proposed and studied 14 “natural tensor norms”
and posed a number of open questions, one of which was whether the
norms ‖ · ‖X⊗πY and ‖ · ‖X⊗εY can be equivalent when when
dim X = dim Y =∞.

It was a surprise when in 1980s Pisier answered this question in the
positive, even more so because he showed earlier that if dim X →∞ and
dim Y →∞, then

ρ(X ,Y ) → ∞.

Also surprisingly, no quantitative analysis of the finite-dimensional case
was made until very recently.
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Some special cases

If H,K are Hilbert (inner product) spaces, the situation is very simple:
‖ · ‖ε is the operator (spectral) norm, while ‖ · ‖π is the trace class norm
and so

ρ(H,K) = min{dimH, dimK}.
(This in particular saturates the easy general upper bound for ρ(X ,Y ).)
For a general lower bound, a naive attempt is to appeal now to the John’s
theorem, which says that if dim X = n = dimH, where H is a Hilbert
space, then d(X ,H) 6 n1/2, where

d(E ,F ) = min{‖v : E → F‖ · ‖v−1 : F → E‖}

is the Banach-Mazur distance. This allows to obtain some nontrivial
information; for example using v , v−1 certifying d(X ,H) 6 n1/2 as w , z in

ρ(X ,H) = max
‖w :H→X∗‖61, ‖z:X∗→H‖61

tr wz

we obtain ρ(X ,H) > n1/2. The same circle of ideas allows to handle the
case of different dimensions: ρ(X ,H) > min{dim X , dimH}1/2.
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Some special cases, cont’d

The same argument proves a cute equality ρ(X ,X ∗) = dim X , but it
doesn’t help in the general case: by a 1981 result of Gluskin
max{d(E ,F ) : dim E = dim F = n} = Θ(n) and no nontrivial lower bound
can be directly inferred.

Here are other interesting special cases that can be handled. If (say)
dim X > n, then

ρ(X , `n1) > (n/2)1/2 and ρ(X , `n∞) > (n/2)1/2.

The first inequality follows by relating ρ(X , `n1) to the so-called p-summing
norms of the identity on X ; these concepts were fashionable in 1970s and
1980s. The second one is then a consequence of (generally true)
ρ(X ,Y ) = ρ(X ∗,Y ∗). No substantial improvement is possible since
ρ(H, `n1) = n1/2 (easy), but we do not know whether (n/2)1/2 can be
replaced by n1/2 in general.
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The quantum case

The case that is of relevance to quantum theory is when X ,Y are spaces
of Hermitian matrices endowed with the trace class norm. We have then

ρ(X ,Y ) = Θ(min{dim X , dim Y }3/4).

Here is the idea behind the O(·) argument. For simplicity, consider X = Y
to be spaces of k × k matrices, so n = dim X = dim Y = k2. We note first
that z ∈ X ⊗ε Y can be thought of as a bilinear form on X ∗ × Y ∗ and
that X ∗ = Y ∗ is (the self-adjoint part of) the C ∗-algebra A of k × k
matrices with the usual operator norm. Thus we are in the realm of the
Haagerup-Pisier non-commutative Grothendieck inequality, which says
that for such bilinear form there are states ϕ,ψ on A such that

|z(a, b)| 6 2‖z‖ε ϕ(a2)1/2 ψ(b2)1/2 for all a, b ∈ ReA.

With this information, we need to upper-bound ‖z‖π.
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The quantum case, conclusion

We need to upper-bound ‖z‖π, or the nuclear norm of z : A → A∗, using

|z(a, b)| 6 2‖z‖ε ϕ(a2)1/2 ψ(b2)1/2 for all a, b ∈ ReA.

Here is a calculation which is not quite right, but supplies the gist of the
trick. Let ϕ =

∑
i λi |ui 〉〈ui | be the spectral decomposition. We will

estimate the nuclear norm of z : A → A∗ (say, with ‖z‖ε 6 1) by writing

z(a) =
∑
i ,j

tr(aEji )z(Eij), or z =
∑
i ,j

|z(Eij)〉〈Eji |

where Eij = |ui 〉〈uj |. For a single term, we have

‖z(Eij)‖A∗ = max
‖b‖A61

|z(Eij , b)| 6 2ϕ(|Eij |2)1/2 6 2λ
1/2
i

(note that ψ(b2) 6 1 if ‖b‖A 6 1) and summing over i , j gives

2k
∑

i λ
1/2
i 6 2k3/2 = 2n3/4 as a bound on ‖z‖π (4n3/4 if we don’t cheat).
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The general case, or cases

Modulo logarithmic factors (indicated by ∗ in the Ω notation), we have:

• X = Y , dim X = n: ρ(X ,X ) = Ω∗(n1/2) (almost optimal, see X = `n1)

• dim X = dim Y = n: ρ(X ,Y ) = Ω∗(n1/6)

• dim X = n 6 dim Y : ρ(X ,Y ) = Ω∗(n1/8)

The upper bounds are respectively (2n)1/2, n1/2, and again n1/2. We know
that the upper bound (2n)1/2 is not sharp, but we do not know whether
the factor 2 can be removed. It is conceivable that all these quantities are
actually Ω∗(n1/2) or even Ω(n1/2).
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The toolbox for the general case

This is again based on ρ(X ,Y ) = max‖w :Y→X∗‖61, ‖z:X∗→Y ‖61 tr wz and
an appropriate relaxation of the choices w = v , z = v−1. First, we define
the factorization constant of X through Y as

f(X ,Y ) ..= inf
u,v
{‖u : X → Y ‖ · ‖v : Y → X‖ : vu = IdX} ,

which allows dim X 6= dim Y and means that a subspace “well-isomorphic”
to X is“well-complemented” in Y . Next, the weak factorization constant is

wf(X ,Y ) ..= inf
u,v
{E [‖u : X → Y ‖ · ‖v : Y → X‖] : E [vu] = IdX} ,

where u, v are now operator-valued random variables.
Clearly wf(X ,Y ) 6 f(X ,Y ) 6 d(X ,Y ) and one easily checks that

ρ(X ′,Y ) 6 wf(X ′,X )ρ(X ,Y ) and ρ(X ,Y ) >
dim X

wf(X ,Y ∗)
.

S. Szarek (CWRU/Sorbonne) Discrepancy between tensor product norms Leiden, May 7, 2019 18 / 22



The toolbox for the general case, cont’d

If X = Y , we select u, v “at random.” At first, we choose a representation
of X of Rn and let u = n−1/2G , v = n−1/2G †, where G is a GUE matrix.
The tool which allows to estimate E‖G : X ∗ → Y ‖ is the Chevet-Gordon
inequality, which upper-bounds it by n−1/2 times

‖Id : `n2 → X ∗‖ · E‖g‖Y + ‖Id : `n2 → Y ∗‖ · E‖g‖X ,

where g is the standard Gaussian vector on Rn. If X = Y , the two terms
coincide and – bounding similarly E‖G † : X ∗ → Y ‖ – we need to control

‖Id : `n2 → X ∗‖ · ‖Id : X ∗ → `n2‖ · E‖n−1/2g‖X · E‖n−1/2g‖X∗ .

For an appropriate representation of X of Rn, the first two factors give
d(X ∗, `n2) = d(X , `n2) 6 n1/2. The last two factors are essentially the same
as spherical means, which can be controlled by the MM∗-estimate.
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Mean (half-)width of K ⊂ Rn and the MM∗-estimate

If |u| = 1 and w(K , u) := supx∈K 〈u, x〉 = ‖u‖K◦ , then
w(K , u) + w(K ,−u) is the width of K in the direction of u. The average
over u is the mean half-width of K .

The MM∗-estimate says that, for some well-balanced linear image K̃ of a
centrally symmetric convex body K ⊂ Rn we can achieve
w(K̃ )w(K̃ ◦) = O(log n).

Some additional tweaking is needed since we need to reconcile two
requirements for the representation of X of Rn, the one witnessing
d(X , `n2) and the other consistent with the MM∗-estimate, but ultimately
gathering all bounds we get

ρ(X ,X ) = Ω

(
dim X

d(X , `n2) log3 n

)
> Ω

(
n1/2

log3 n

)
,

as needed.
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The case X 6= Y

There are too many “balancing requirements” to be simultaneously
achievable, so instead the argument is based on the following trichotomy.

Let X be a normed space of dimension n. Then for every 1 6 A 6 n1/2 at
least one of the following holds

1 X contains a subspace E of dimension d = Ω(n1/2) such that
d(E , `d∞) = O(A

√
log n).

2 X ∗ contains a subspace F of dimension d = Ω(n1/2) such that
d(F , `d∞) = O(A

√
log n).

3 X contains a subspace H of dimension d = Ω(A2/ log n) such that
d(H, `d2 ) 6 4 and, additionally, H is O(log n)-complemented in X .

Since subspaces λ-isomorphic to `d∞ are automatically λ-complemented,
each of the conditions above leads to an upper bound on wf(`dp ,X ) for the

appropriate p ∈ {1, 2,∞}. Given that ρ(`dp , `
d ′
p′ ) are known, every

combination of these conditions for X and Y leads to a lower bound on
ρ(X ,Y ), and the final step is optimizing over A.
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THANK YOU!

S. Szarek (CWRU/Sorbonne) Discrepancy between tensor product norms Leiden, May 7, 2019 22 / 22


