Capacity of quantum channels from subfactors

Pieter Naaijkens

Universidad Complutense de Madrid

8 May 2019

This work was funded by the ERC (grant agreement No 648913)

Infinite quantum systems

Quantum systems with infinitely many d.o.f.:

- >Quantum field theory
- > Systems in thermodynamic limit...
- >e.g. quantum spin systems with topological order

Can we do quantum information?

Infinite quantum systems

$$\mathcal{H} = \mathcal{L}^d$$
 $\mathcal{H} = \ell^2(\mathbb{Z}), L^2(\mathbb{R}), \dots$

E.g.: infinitely many spins: $\mathcal{H} = \bigotimes_{\mathbb{Z}} \mathbb{C}^2$

Stone-von Neumann uniqueness Superselection sectors

Take an operator algebraic approach

1 (50,00) Outline ge 2-2 log cos F(So,S,)) A (2,3):= arcos Etter. (3,7 Von Neumann algebras -2(F(2, 7)) = 1-1Classical information theory (So@Z, R(S.)) Subfactors and QI 2 d (Rod, P, 07, , 50, 9, 0, 0 $\chi = bog(bog2-1+), \quad f(f_0 o_2, R(f_0)) + l, F$ F(Po,P) F(Possi)

Von Neumann algebras

Von Neumann algebras

- $\mathcal{M} \subset \mathfrak{B}(\mathcal{H})$ *-subalgebra and closed in norm
- It is a von Neumann algebra if closed in w.o.t.:

$$\lim_{\lambda} \langle \psi, (A - A_{\lambda})\psi \rangle = 0 \quad \Rightarrow A \in \mathcal{M}$$

Equivalent definition: $\mathcal{M} = \mathcal{M}''$

A factor $\mathcal{M} \cap \mathcal{M}' = \mathbb{C}I$ $\mathcal{M} \cong \mathfrak{B}(\mathcal{H})$

Can be classified into Type I Type II, Type III

Normal states

A state is a positive linear functional $\omega : \mathcal{M} \to \mathbb{C}$ $\omega(A^*A) \ge 0, \quad \omega(I) = 1$ Normal if $\sup_{\lambda} \omega(X_{\lambda}) = \omega(\sup_{\lambda} X_{\lambda})$ $\Leftrightarrow \exists \rho \ge 0 \quad \text{with} \quad \omega(A) = \operatorname{Tr}(\rho A)$

If a factor \mathcal{M} is not of Type I, there are *no normal pure states*

$$S(\rho) = +\infty$$

Quantum information

> work mainly in the Heisenberg picture

- > observables modelled by von Neumann algebra
- > consider **normal states** on \mathfrak{M}
-) channels are normal unital CP maps $\mathcal{E}:\mathfrak{M}\to\mathfrak{N}$
- > Araki relative entropy $S(\omega, \phi)$

Quantum information

> use quantum systems to communicate

> main question: how much information can I transmit?

> will consider infinite systems here...

> ... described by subfactors

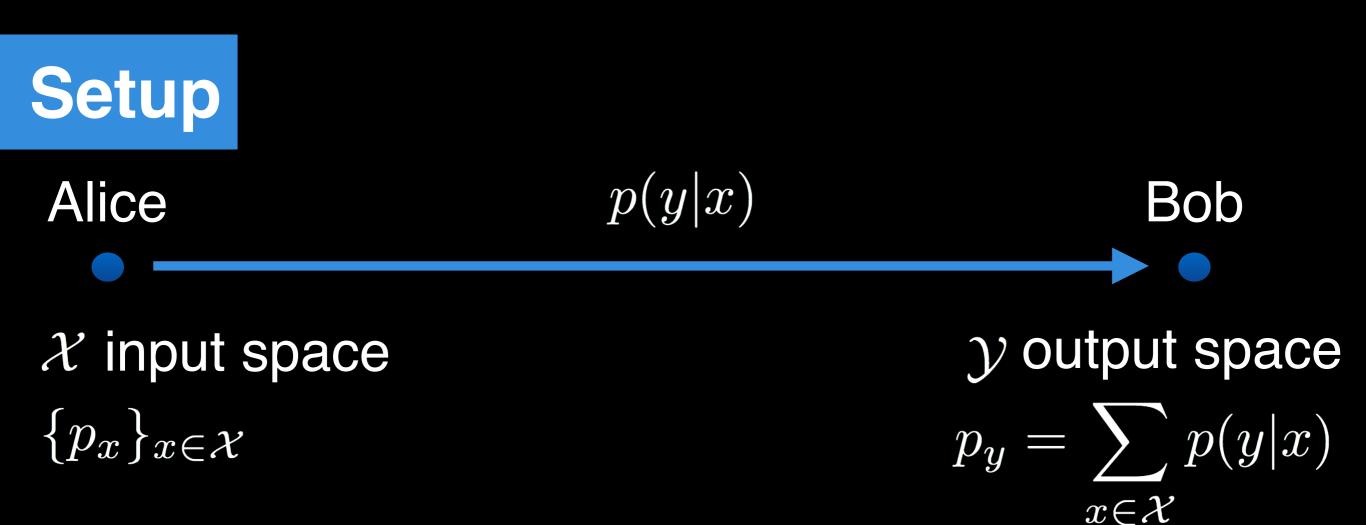
> channel capacity is given by Jones index

Classical wiretapping channels

Information theory

Alice wants to communicate with **Bob** using a **noisy channel**. How much information can Alice send to Bob per use of the channel?

Image source: Alfred Eisenstaedt/The LIFE Picture Collection



How well can Bob recover the messages sent by Alice (small error allowed)?

Relative entropy

Compare two probability distributions P, Q:

$$H(P:Q) = \begin{cases} \sum p_x \log \frac{p_x}{q_x} & \{x:p_x>0\} \subset \{x:q_x>0\} \\ +\infty & \text{else} \end{cases}$$

Vanishes iff *P=Q*, otherwise positive

Mutual information

`information' due to noise

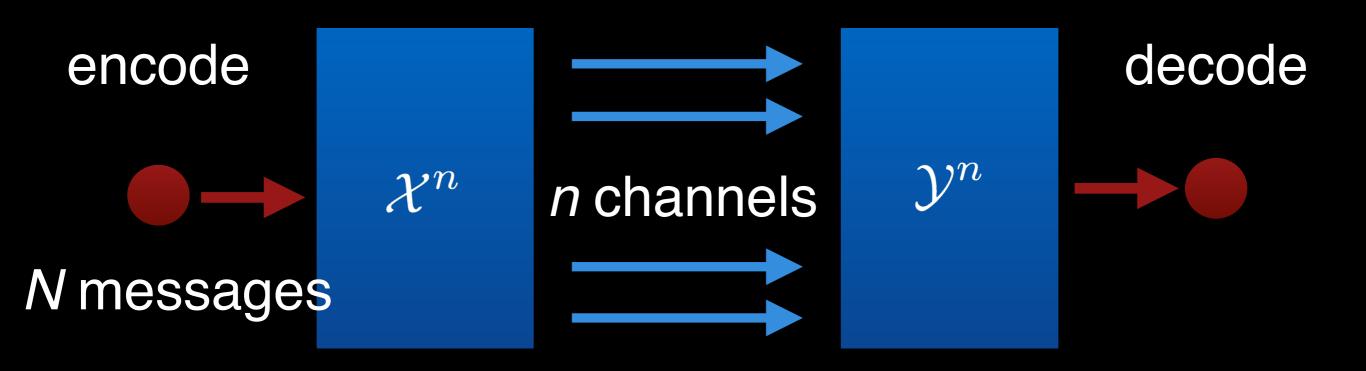
$$I(X:Y) = H(Y) - H(X|Y)$$

here the conditional entropy is defined:

$$H(Y|X) = \sum_{x} p_x H(Y|X=x)$$

some algebra gives: $P'_x = \{p(y|x)\}$ $P' = \sum_x p_x P'_x$ $I(X:Y) = \sum_x p_x H(P'_x:P')$

Operational approach



Maximum error for *all* possible encodings:

 $p_e(n,N)$

Coding theorem

Def: R is called an achievable rate if

$$\lim_{n \to \infty} p_e(n, 2^{nR}) = 0$$

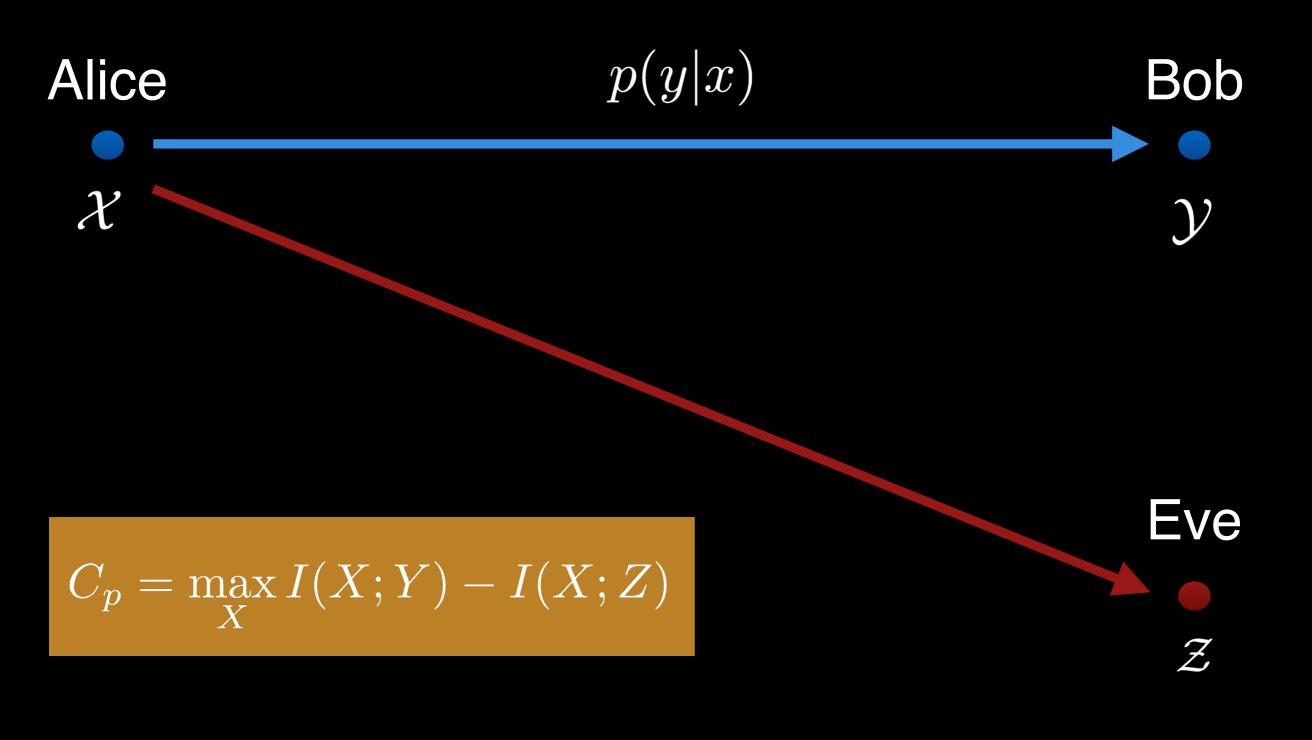
The supremum of all *R* is called the **capacity** *C*.

Theorem: the capacity is the *Shannon capacity* of the channel, defined as:

$$C_{Shan} = \max_{X} I(X:Y)$$

This is a single-letter formula!

Wiretapping channels



Quantum information

Distinguishing states

Alice prepares a mixed state ρ :

$$\rho = \sum_{i=1}^{n} p_i \rho_i$$

...and sends it to Bob

Can Bob recover $\{p_i\}$?

Holevo χ quantity

In general not exactly:

$$\chi(\{p_i\},\{\rho_i\}) := S(\rho) - \sum_i p_i S(\rho_i)$$
$$= \sum_i p_i S(\rho_i,\rho)$$

Generalisation of Shannon information

Araki relative entropy

Let ω, ϕ be faithful normal states:

Def: $S_{\varphi,\omega} : x\xi_{\varphi} \mapsto x^*\xi_{\omega}$ $\Delta(\varphi,\omega) = S_{\varphi,\omega}\overline{S}_{\varphi,\omega}^*$

Def:

$$egin{aligned} S(arphi,\omega) &:= -\langle \xi_{\phi}, \log \Delta(arphi,\omega), \xi_{\phi}
angle \ &= i \lim_{t o 0^+} t^{-1} (arphi([D\omega:Darphi]_t)-1) \end{aligned}$$

$$S(\rho, \sigma) = \operatorname{Tr}(\rho \log \rho - \rho \log \sigma)$$

Infinite systems

Suppose \mathfrak{M} is an infinite factor, say Type III, and φ a faithful normal state

$$\sup_{(arphi_i)}\sum p_x S(arphi_x,arphi)=\infty$$
 where $arphi=\sum_x p_x arphi_x$

Better to compare algebras!

- A **subfactor** is an inclusion of factors $\mathcal{R} \subset \widehat{\mathcal{R}}$
- It is irreducible if $\widehat{\mathcal{R}}' \cap \mathcal{R} = \mathbb{C}I$
- The **Jones index** $[\widehat{\mathcal{R}}:\mathcal{R}]$ gives the "relative size"

Jones, Invent. Math. **72** (1983) Kosaki, J. Funct. Anal. **66** (1986) Longo, Comm. Math. Phys. **126** (1989)

A quantum channel

For finite index inclusion $\mathcal{R} \subset \widehat{\mathcal{R}}$, say *irreducible*,

$$\mathcal{E}: \widehat{\mathcal{R}} \to \mathcal{R}, \qquad \mathcal{E}(X^*X) \ge \frac{1}{[\widehat{\mathcal{R}}:\mathcal{R}]} X^*X$$

quantum channel, describes the **restriction** of operations

Comparing algebras

Want to compare
$$\widehat{\mathcal{R}}$$
 and \mathcal{R} , with $\mathcal{R} \subset \widehat{\mathcal{R}}$ subfactor

$$H_{\phi}(\widehat{\mathcal{R}}|\mathcal{R}) = \sup_{(\phi_i)} \left(\sum_{i} [S(p_i \phi_i, \phi) - S(p_i \phi_i \upharpoonright \mathcal{R}, \phi \upharpoonright \mathcal{R})] \right)$$

$$= \sup_{(\phi_i)} \left(\chi(\{p_i\}, \{\phi_i\}) - \chi(\{p_i\}, \{\phi_i \upharpoonright \mathcal{R}\})) \right)$$

$$\Delta_{\chi}$$

Shirokov & Holevo, arXiv:1608.02203

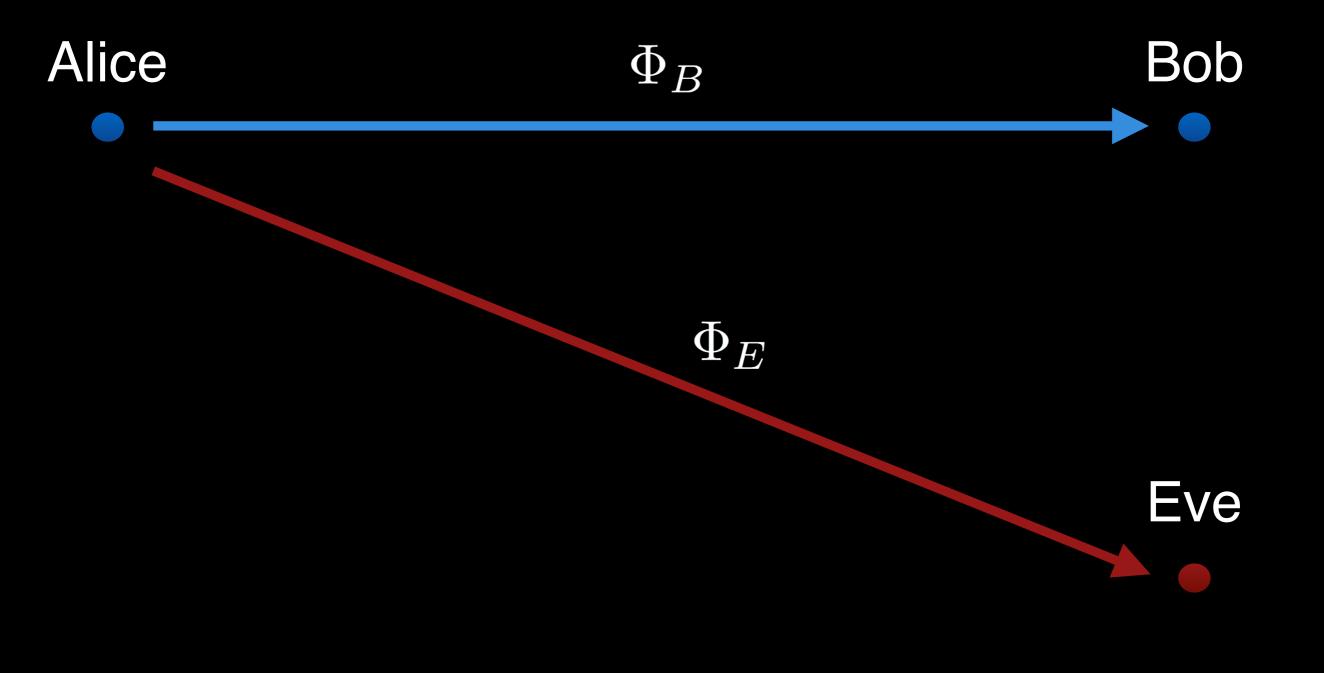
Jones index and entropy

$$\log[\widehat{\mathcal{R}}:\mathcal{R}] = \sup_{\phi:\phi\circ\mathcal{E}=\phi} H_{\phi}(\widehat{\mathcal{R}}|\mathcal{R})$$

Hiai, J. Operator Theory, '90; J. Math. Soc. Japan, '91

gives an **information-theoretic** interpretation to the Jones index

Quantum wiretapping



Theorem (Devetak, Cai/Winter/Yeung) The rate of a wiretapping channel is given by $\lim_{n \to \infty} \frac{1}{n} \max_{\{p_x, \rho_x\}} \left(\chi(\{p_x\}, \Phi_B^{\otimes n}(\rho_x)\}) - \chi(\{p_x\}, \Phi_E^{\otimes n}(\rho_x)\}) \right)$

A conjecture

The Jones index $[\mathfrak{M} : \mathfrak{N}]$ of a subfactor gives the classical capacity of the wiretapping channel that restricts from \mathfrak{M} to \mathfrak{N} .

L. Fiedler, PN, T.J. Osborne, New J. Phys **19**:023039 (2017) PN, Contemp. Math. **717**, pp. 257-279 (2018), arXiv:1704.05562

Some remarks

> use entropy formula by Hiai

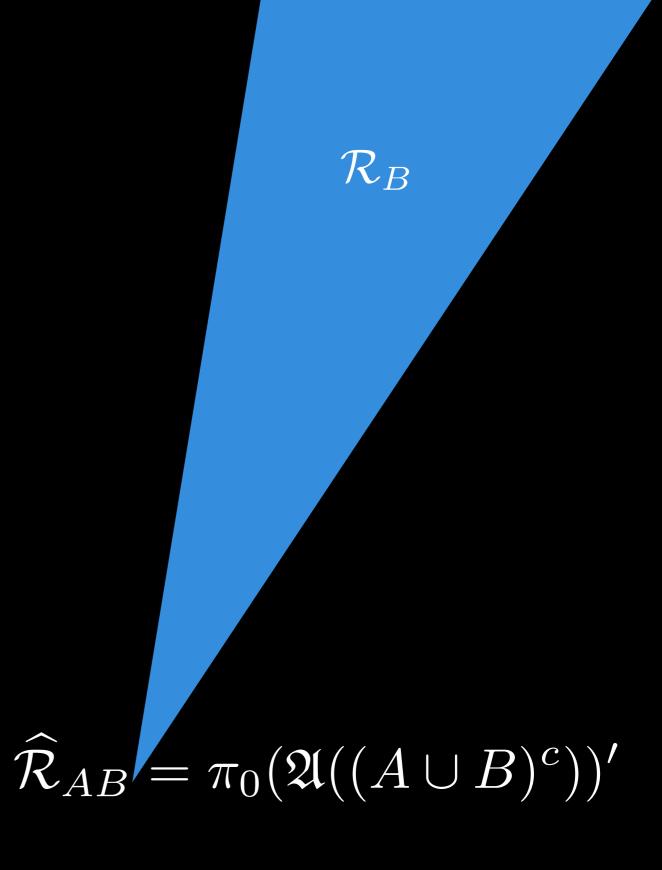
> together with properties of the index

$$[\widehat{\mathcal{R}}^{\otimes n}:\mathcal{R}^{\otimes n}] = [\widehat{\mathcal{R}}:\mathcal{R}]^n$$

> averaging drops out: single letter formula

coding theorem is missing

 $\mathcal{R}_{AB} = \mathcal{R}_A \lor \mathcal{R}_B$



Locality: $\mathcal{R}_{AB} \subset \widehat{\mathcal{R}}_{AB}$

but:

 $\mathcal{R}_{AB} \subsetneqq \widehat{\mathcal{R}}_{AB}$

 $[\widehat{\mathcal{R}}_{AB}:\mathcal{R}_{AB}] = \sum d_i^2$