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Discussions with Michael Walter, Freek Witteveen, Maris Ozols, Christian
Majenz (QuSoft)



Statement of the problem

We consider a quantum system consisting of n identical, but distinguishable
subsystems (”particles”) described by Hilbert spaces of dimension d .

A state on such a system is called a Werner state if it is invariant under the
global unitary rotation of all the individual Hilbert spaces together. It is called
symmetric if is invariant for permutation of the particles.

A state is called entangled if it can not be written as a convex combination of
product states.

For a given symmetric Werner state, we want to find out if it is entangled or
not.

And also, whether there is a relation between entangement and extendability.



Motivation

Entanglement is a central issue in quantum information theory.

The study of n party-entanglement is considered difficult. It is complicated by
the fact that the state space of n systems of size d has a large dimension:
d2n − 1.

The number of parameters is greatly reduced by restricting attention to the
symmetric Werner states. The dimension d drops out entirely, and the number
of parameters becomes (one less than) the number of possible partitions of the
n particles.

For example, for 2 quantum identical systems of arbitrary size d there is only
one parameter.

An advantage of this restraint is that we can lean on a vast body of results
from classical mathematics: the representation theory of Sn and SU(d), as
pioneered by Frobenius, Schur, Weyl, Littlewood, . . . .

But also some relatively recent work in multilinear algebra turns out to be
relevant to our question.

Extendability relates to the ‘monogamy’ property of entanglement.



Overview of the talk

◮ Entanglement of Werner states for n = 2;

◮ Symmetric Werner states on n particles;

◮ Separable symmetric Werner states and immanants;

◮ The case n = 3;

◮ The ‘shadow’ of the product states and its behaviour for general n;

◮ Schur’s inequality and Lieb’s conjecture;

◮ The case n = 4;

◮ The case n = 5: Hope crashed.

◮ Extendability of symmetric Werner states

◮ A quantum de Finetti theorem of Christandl et al.



Symmetries in the two-particle case

H = C
d ⊗ C

d
.

Symmetry group: u ∈ SU(d) acting as u ⊗ u.

This action commutes with the ”Flip” operator:

F : ϕ⊗ ψ 7→ ψ ⊗ ϕ .

Eigenspaces H+ and H− of F are invariant for SU(d):

H+ := span{ψ ⊗ ψ |ψ ∈ C
d }

basis: { ei ⊗ ei | 0 ≤ i ≤ d } ∪
{

1√
2
(ei ⊗ ej + ej ⊗ ei )

∣

∣

∣

∣

0 ≤ i < j ≤ d

}

.

dimH+ =
d(d + 1)

2
=

(

d + 1

2

)

;

basis of H− :

{

1√
2
(ei ⊗ ej − ej ⊗ ei )

∣

∣

∣

∣

0 ≤ i < j ≤ d

}

.

dimH− =
d(d − 1)

2
=

(

d

2

)

.



Werner states
The group SU(d) acts irreducibly on H+ and on H−.
Hence the action of SU(d) has commutant

{ u ⊗ u | u ∈ SU(d) }′ = {λp+ + µp− | λ,µ ∈ C } = {F}′′ ,

and the minimal nonzero symmetric projections are

p± :=
1l± F

2
= projection onto H± .

The SU(d)-symmetric states (i.e. Werner states) are convex combinations of

ω± := (anti-)symmetric state: x 7→ trp±x

trp±
=

tr
(

1l±F
2

x
)

dimH±
.

The Werner states are given by

ω = λω+ + (1− λ)ω−, 0 ≤ λ ≤ 1 .

We note that a Werner state is fixed by specifying its value on the flip
operator:

ω(F ) = λ− (1− λ) = 2λ− 1 .



Entanglement of Werner states for n = 2
For x ∈ Md ⊗Md , let Tx denote its average over the group SU(d):

Tx :=

∫

SU(d)

(u ⊗ u)∗x(u ⊗ u) du ,

where du denotes the Haar measure on SU(d).

For states: T ∗ϑ : x 7→ ϑ(Tx): projection of ϑ onto the Werner states,
T ∗ϑ coincides with ϑ on F .

Theorem
A Werner state ω on Md ⊗Md is separable iff

ω(F ) ≥ 0 .

This the optimal Bell inequality for Werner states on two particles.

ω+ω−

entangled separable

ω+



Proof.

For any pure product state ψ ⊗ ϕ ∈ C
d ⊗ C

d the expectation of F is positive:

〈ψ ⊗ ϕ,F (ψ ⊗ ϕ)〉 = 〈ψ ⊗ ϕ, ϕ⊗ ψ〉 = 〈ψ,ϕ〉〈ϕ,ψ〉 = |〈ψ,ϕ〉|2 ≥ 0 .

This inequality extends to all separable states by convexity.

Conversely, suppose 0 ≤ ω(F ) ≤ 1 for some Werner state ω,
and choose unit vectors ψ,ϕ with

|〈ψ,ϕ〉|2 = ω(F ) .

Then the separable state

σ : x 7→
〈

ψ ⊗ ϕ,T (x)ψ ⊗ ϕ
〉

=

∫

SU(d)

〈

(u ⊗ u)ψ ⊗ ϕ, x(u ⊗ u)ψ ⊗ ϕ
〉

du

is a Werner state, and coincides with ω on F .
Hence ω = σ, which is separable.



The chaotic state moves to the boundary as d → ∞

Curious fact:
lim

d→∞
τd ⊗ τd(F ) = 0 .

Indeed,

τd ⊗ τd(F ) =
1

d2
trd ⊗ trd(F ) =

1

d2

d
∑

i,j=1

〈ei ⊗ ej ,F (ei ⊗ ej )〉

=
1

d2

d
∑

i,j=1

〈ei ⊗ ej , ej ⊗ ei 〉 = 1

d2

d
∑

i,j=1

δij =
1

d
.

ω+ω−

entangled separable

ω+
1
2

1
3

1
4

· · ·



General n ∈ N: Schur-Weyl duality
On the Hilbert space

H := C
d ⊗ C

d ⊗ · · · ⊗ C
d (n times)

there are representations of two groups: Sn and SU(d):

Sn ∋ σ : π(σ)ψ1 ⊗ ψ2 ⊗ . . .⊗ ψn := ψσ−1(1) ⊗ ψσ−1(2) ⊗ · · · ⊗ ψσ−1(n)

SU(d) ∋ u : π
′(u)ψ1 ⊗ ψ2 ⊗ . . .⊗ ψn := uψ1 ⊗ uψ2 ⊗ · · · ⊗ uψn

The classical Schur-Weyl duality theorem states that these two group actions
do not only commute, but the algebras they generate are actually each other’s
commutant.
In particular they have the same center:

Z := Z(n, d) := π(Sn)
′ ∩ π′(SU(d))′ .

The minimal projections in this center cut both group representations into their
irreducible components, and they are labeled by Young diagrams.
Indeed we have

π(σ)π′(u) ∼=
⊕

λ⊢n

πλ(σ)⊗ π
′
λ(u) .

In particular

dn =
∑

λ⊢n

d(λ)d ′(λ) .



The group algebra of Sn

Let An denote the group algebra of Sn:

f : Sn → C to be viewed as
∑

σ∈Sn

f (σ)σ .

Multiplication in An is convolution:

(f ∗ g)(σ) =
∑

τ∈Sn

f (τ )g(τ−1
σ) .

The unit is δe , where e is the identity element of Sn.
Adjoint operation:

f ∗(σ) = f (σ−1) .

Every unitary representation of Sn automatically extends to a representation of
An.
In our case

π(f ) : ψ1 ⊗ . . .⊗ ψn 7→
∑

σ∈Sn

f (σ)ψσ−1(1) ⊗ . . .⊗ ψσ−1n .



The (left) regular representation of Sn

We let f ∈ An act on the Hilbert space l2(Sn) by convolution on the left:

h 7→ f ∗ h .

The trace is in this representation of a particularly simple form:

trreg(f ) :=
∑

σ∈Sn

〈δσ, f ∗ δσ〉 =
∑

σ∈Sn

(f ∗ δσ)(σ) = n! · f (e) ,

and will be called the regular trace.

The normalized version τreg := 1
n!
trreg is the regular trace state:

τreg : f 7→ f (e) .



The center of the group algebra of Sn

Zn := An ∩A′
n .

We have f ∈ Zn if and only if for all σ, τ ∈ Sn: f (στ ) = f (τσ):
the center consists of the class functions. Hence

dimZn = #(conjugacy classes of Sn)

= #(partitions of n) =: P(n) .

On the other hand, since Zn is an abelian matrix algebra, it must be of the
form

Zn =
⊕

λ⊢n

Cpλ

for some orthogonal set of minimal projections pλ in the center. These can be
labeled by Young diagrams.
The states on the center form a simplex with extreme points ωλ given by

ωλ(pµ) = δλµ .



minimal projections and irreducible representations

The center of the algebra An is spanned by the minimal projections:

pλ(σ
−1) = pλ(σ), pλ ∗ pµ = δλµpλ and

∑

λ⊢n

pλ = δe .

They cut the algebra A = An into factors pλA:

A =
⊕

λ⊢n

pλA ≃
⊕

λ⊢n

Md(λ) ⊗ 1ld(λ) .

Hence
d(λ)2 = tr(pλ) = n! · pλ(e) .



The characters χλ and χ
′
λ

The character χλ(σ) is the trace of σ in its irreducible representation πλ.

χλ(σ) := tr
(

πλ(σ)
)

χ
′
λ(u) := tr

(

π
′
λ(u)

)

.

χ′(λ) is given by the Schur polynomials

χ
′
λ(diag(x1, . . . , xd)) = sλ(x1, . . . , xd ) .

χλ(σ) is directly related to the projection operator pλ:

χλ(σ) =
n!

d(λ)
· pλ(σ) .



Young frames

The irreducible representations of Sn (and hence also the minimal central
projections and the characters) are labelled by Young frames with n boxes:

λ = .

(Hook length rule)

d(λ) =
n!

∏

hook lengths
.

For example:

d

( )

=
5!

4× 3× 2
= 5 hook lengths: 4 3 1

2 1
.



Young vectors

The irreducible representations of Sn (and hence also the minimal central
projections and the characters) can be constructed from Young frames with n
boxes, for example:

λ = .

To λ we associate a unit vector ψλ ∈ (Cd)⊗n:

ψλ := ψ ⊗ ψ ⊗ ψ ⊗ ψ .

Here, ψ (with height k) is the antisymmetric product

ε1 ∧ ε2 ∧ · · · ∧ εk .
in terms of the canonical basis ε1, ε2, . . . , εd of Cd .



Construction of the minimal projections

Theorem
The projection onto the linear span of the vectors

π(σ)ψλ , (σ ∈ Sn)

is a minimal projection in the commutant

π
(

An

)′
.

On this space π acts as an irreducible representation of Sn.
The projection onto the linear span of the vectors

π(σ)π′(u)ψλ , (σ ∈ Sn, u ∈ SU(d))

is the image π(pλ) of the minimal projection pλ ∈ Z.
We have for λ 6= λ′,

π(pλ)π(pλ′) = 0 .

Moreover,
∑

λ

π(pλ) = 1lHn,d
.



Generalized Pauli exclusion principle

Theorem
Let n, d ∈ N. Let λ denote a Young frame with n boxes. Then

πn,d(pλ) = 0 iff height(λ) > d .

Proof.
The Young vector ψλ fits into a d-eimensional space iff

height(λ) ≤ d .

For example, the symmetric subspace, having Young frame , is nonzero in
(Cd)⊗4 for every one-particle dimension d , but, according to Pauli’s exclusion

principle, the antisymmetric subspace, with Young frame , needs d ≥ 4.

Hence the above theorem generalizes this exclusion principle.



Symmetric Werner states on B
(

(Cd)⊗n
)

Observables (operators) on H := C
d ⊗ . . .⊗ C

d can be ‘twirled’ and averaged:

Ta :=

∫

SU(d)

(u ⊗ . . .⊗ u)∗ a (u ⊗ . . .⊗ u) du ;

Ma :=
1

n!

∑

σ∈Sn

π(σ)∗ aπ(σ) .

Clearly, Ta ∈ π′(SU(d))′, and in the same way Ma ∈ π(Sn)
′.

Hence P := TM = MT projects onto the center π(Zn),
Dually P∗ takes a state ϑ, restricts it to the center, and then extends it to a
symmetric Werner state on B(H):

(P∗
ϑ)(a) := ϑ(Pa) .

Theorem (Separability of symmetric Werner states)
Let ϑ be a symmetric Werner state on B

(

(Cd)⊗n
)

. Then ϑ is separable iff its
restriction to Z lies in the convex hull of the restricted product states.

Conclusion: We must calculate the shadow of the product states!



The trace state

Theorem
The trace state on M⊗n

d moves towards the regular trace on Zn as d → ∞.

Proof.
First we calculate:

tr
⊗n
d (π(σ)) =

d
∑

i1=1

· · ·
d
∑

in=1

〈ei1 ⊗ · · · ⊗ ein , π(σ) ei1 ⊗ · · · ⊗ ein 〉

=

d
∑

i1=1

· · ·
d
∑

in=1

δi1 i
σ−1(1)

· · · δin i
σ−1(n)

.

= d#(cycles of σ)
.

since for every cycle one summation variable remains. Hence:

τ
⊗n
d (pλ) =

d(λ)

n!

∑

σ∈Sn

χλ(σ)
1

dn
tr

⊗n
d (π(σ))

d→∞−−−→ d(λ)2

n!
= τreg(pλ) .



The shadow of the product states
The state space S(Z) of the center Z is a simplex whose corners are the states

ωλ : pλ′ 7→ δλλ′ .

The product states throw their shadow on this simplex:
the barycentric coordinates of the product state ψ = ψ1 ⊗ . . .⊗ ψn w.r.t. these
ωλ are given by

wψ(λ) := 〈ψ1 ⊗ . . .⊗ ψn, π(pλ)ψ1 ⊗ . . .⊗ ψn〉 .
We note that the the regular trace has coordinates:

wreg(λ) := τreg(pλ) =
d(λ)2

n!
.

Now here’s our basic connection between entanglement and classical
mathematics:

Theorem (Barycentric coordinates of a product state)
The coordinates of a product state ψ1 ⊗ . . .⊗ ψn are obtained by multiplying
those of the regular trace with the normalized immanant of the Gram matrix of
ψ1, ψ2, . . . , ψn:

wψ(λ) = wreg(λ) · Ĩmmλ

(

(〈ψi , ψj 〉)ni,j=1

)

.



Immanants of a matrix
Let A be an n × n matrix, and let λ be a Young frame with n boxes.
Then the immanant Immλ(A) of this matrix associated to λ is defined as

Immλ(A) :=
∑

σ∈Sn

χλ(σ) a1σ(1)a2σ(2) · · · anσ(n) .

The normalized immanant Ĩmmλ(A) is defined so as to have Ĩmm(1l) = 1:

Ĩmmλ(A) :=
Immλ(A)

d(λ)
.

Note the following well-known special cases:

Imm (A) = det(A) and Imm (A) = per(A) .

We mention the following inequalities: for all positive definite matrices A and
all Young frames λ:

det(A) ≤ Ĩmmλ(A) ≤ per(A) .

The first inequality was proved by Schur in 1918, the second was conjectured
by Elliott Lieb in 1967, and is still open!



Calculation of coordinates

Proof.
This is not more than a concatenation of definitions connecting quantum
information (entanglement) to algebra (immanants).
The weight of the extreme point ωλ in the expansion of the pure product state
ψ = ψ1 ⊗ . . .⊗ ψn is equal to

wψ(λ) = 〈ψ1 ⊗ . . .⊗ ψn, π(pλ)ψ1 ⊗ . . .⊗ ψn〉

=
d(λ)

n!

∑

σ∈Sn

χλ(σ)〈ψ1 ⊗ . . .⊗ ψn, π(σ)ψ1 ⊗ . . .⊗ ψn〉

=
d(λ)

n!

∑

σ∈Sn

χλ(σ)〈ψ1 ⊗ . . .⊗ ψn, ψσ−1(1) ⊗ · · · ⊗ ψσ−1(n)〉

=
d(λ)

n!

∑

σ∈Sn

χλ(σ)

n
∏

j=1

〈ψj , ψσ−1(j)〉

=
d(λ)

n!
Immλ(G(ψ)) =

d(λ)2

n!
Ĩmmλ(G(ψ)) .



The simplex S(Zn) for n = 3

r

r

τreg

ω+

ω120◦

τreg = P∗(|ψ〉〈ψ|) with G(ψ) =





1 0 0
0 1 0
0 0 1



;ω+ = P∗(|ψ〉〈ψ|) with G(ψ) =





1 1 1
1 1 1
1 1 1



;ω120◦ = P∗(|ψ〉〈ψ|) with G(ψ) =





1 − 1
2

− 1
2

− 1
2

1 − 1
2

− 1
2

− 1
2

1



;The shadow of the product states!The separable states



Optimal Bell inequalities for n = 3

For n = 3 the separable region is a polytope, having a finite number (3) of
extreme points.
We need only two linear (‘Bell’) inequalities in order to distinguish the
separable from the entangled symmetric Werner states.

ω(p+ + 5p−) ≥ 1 ;

ω(4p+ + p−) ≥ 1 .

They correspond to the green lines in the figure.

Questions:

◮ Is the convex hull of the separable symmetric Werner states (the
‘shadow’) always a polytope?

◮ What is the general shape of this region?

◮ Does is grow or shrink with increasing n?



Shadow moves away from the antisymmetric state

Theorem
For all separable symmetric Werner states ω we have

ω(p−) ≤ 1

n!

with equality only for the regular trace state.

Proof.
The determinant of the Gram matrix of an n-tuple of unit vectors is equal to

det
(

〈ψi , ψj 〉
)

= det
(

n
∑

k=1

〈ψi , ek〉〈ek , ψj 〉
)

=
∣

∣det
(

〈ψi , ek〉
)∣

∣

2
= vol(ψ1, ψ2, . . . , ψn)

2 ≤ 1 ;

Hence

〈ψ1 ⊗ . . .⊗ ψn, p− ψ1 ⊗ . . .⊗ ψn〉 ≤ τreg(p−) =
1

n!
.



The trace state kreeps onto the peninsula as d increases

r

r

τreg

d = 2d = 3d = 4d = 5d = 6d = 7d = 10d = 20



The Schur and Lieb inequalities

We have 2P(n)− 3 inequalities, which divide the state space S(Zn) into
compartments, and claim the the shadow of the product states falls into one of
them.

Schur’s 1918 inequality implies that for all separables symmetric Werner states
ω and all Young frames λ:

ω(pλ) ≥ d(λ)2 ω(p−) .

in particular we have the rather trivial inequality ω:

ω(p−) ≤ ω(p+) .

Lieb’s 1967 conjecture hopes that for all separable ω and all Young frames λ:

ω(pλ) ≤ d(λ)2 ω(p+) .

These are all Bell inequalities.



The immanant inequalities for n = 3 in a picture

r

r

τreg
Schur

Lieb

trivial

These are all Bell inequalities, but not all optimal.



The separable region for n = 4
In the case n = 4 there are five Young diagrams:

Theorem (Barrett, Hall, Loewy (1998) translated to quantum
states)
The set of separable symmetric Werner states on B(Cd)⊗4 is the convex hull of
7 extreme points. These extremal states are obtained by twirling and
averaging 7 configurations of unit vectors in C

d (with d ≥ 4 to fit all of them).
These configurations are given by the Gram matrices









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









,









1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1









,









1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 1









,









1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

















1 − 1
2

− 1
2

0
− 1

2
1 − 1

2
0

− 1
2

− 1
2

1 0
0 0 0 1









,









1 − 1
3

− 1
3

− 1
3

− 1
3

1 − 1
3

− 1
3

− 1
3

− 1
3

1 − 1
3

− 1
3

− 1
3

− 1
3

1









,
1√
3









√
3 i i −i

−i
√

3 i i
−i −i

√
3 −i

i −i i
√

3









.



Four qubits

r

r

ω2,2

ω+
ω3,1

ωH



Hope crashed at n = 5

Our hope was, to prove that for all n ∈ N the separable symmetric Werner
states would form a polytope.
However, this hope breaks down at n = 5:

Theorem (Barrett, Hall, Loewy (1999) translated)
The set of all symmetric Werner separable states on B

(

(Cd)⊗5
)

has an infinite
number of extremal points.

In 1999 they showed that, already in the five qubit situation, the set of
separable states on the center possesses a part that is bulging outward.



Proof that for n = 5 separables states do not form a

polytope

r

r



Magnification



Extendability of symmetric Werner states

We say that µ ⊂ λ if for all j ≥ 1 we have µj ≤ λj .
A Young frame µ and a frame λ are said to be adjacent if λ is obtained from µ

by adding a single block.
By connecting such pairs a directed graph is obtained: the Young graph.
By the theory of representations of the permutation groups Sn with n ∈ N, this
is also the graph of restriction and induction of representations.
It follows that, for µ ⊂ λ with #µ = k ,#λ = n:

ωλ(pµ ⊗ 1ln−k ) =
#{paths φ→ λ via µ}

#{paths φ→ λ} .

These are the barycentric coordinates of the restriction of ωλ to Zk ⊗ 1ln−k , i.e.
the symmetric Werner state on k particles obtained by restriction of ωλ.
Conversely, a state on Zk is extendable to a symmetric Werner state on H⊗n iff
it lies in the convex hull of such restrictions, where λ runs through the
partitions of n.



Example: k = 3 and n = 9

Let λ and µ be the Young frames

λ = , µ = .

Then

X := ωλ(p ⊗ 1l6) =

#

{

paths φ→
}

# {paths φ→ λ} =
5

42
,

and, by symmetry also

Y := ωλ(p ⊗ 1l6) =
5

42
.

It follows that

Z := ωλ(p ⊗ 1l6) =
32

42
.

Hence the restriction of ωλ to 3 particles has coordinates 1
42
(5, 5, 32).



Tensor power states on Zk

A particular kind of separable symmetric Werner states are the twirled tensor
power states, described by their restriction to Zk by

z 7→ ρ
⊗k(z) ,

where z ∈ Zk and ρ is a state on Md .
Clearly, these states are separable Werner states.
But not all separables Werner states are of this form:

Lemma
Tensor power states take positive values on the permutations π(σ) with
σ ∈ Sn, but there exist separable Werner states taking negative values on these.

Proof.
Let ρ have diagonal density matrix with entries (x1, . . . , xd ).
Let σ be a permutation with cycle lengts s1, . . . , sl . Then

ρ
⊗k(π(σ)) = (x s1

1 + . . .+ x s1
d ) · (x s2

1 + . . .+ x s2
d ) · · · (x sl

1 + . . .+ x
sl
d ) ≥ 0 .

However, the pure product state ψ1 ⊗ ψ2 ⊗ ψ3 on Z3 with 〈ψi , ψj 〉 = − 1
2
for

i 6= j has

〈ψ, π(123)ψ〉 = −1

8
.



Tensor power states on Z3 with d = 3

Three qutrits can be in the following tensor power states:

r

r



A de Finetti Theorem for Symmetric Werner States
(Christandl, König, Mitchison, Renner, 2008)

Theorem

Let λ be a Young frame of height d and a large number n of blocks:

λ1

λ2

...
λd

Let ρλ denote the state on Md with density matrix

1

n











λ1 ∅
λ2

. . .

∅ λd











.

Then for all z ∈ Zk ⊂ M⊗k
d with ||z || ≤ 1:

|ωλ(z ⊗ 1ln−k )− ρ
⊗k
λ (z)| ≤ 3

4

k(k − 1)

λd

+ O

(

k4

λ2
d

)

, (n → ∞).



Spectacular Result of Okounkov and Olshanski

Theorem

#{paths µ→ λ}
#{paths ϕ→ λ} =

s∗µ(λ1 . . . , λd)

n(n − 1) · · · (n − k + 1)
,

where the shifted Schur functions s∗µ are give by

sµ(x1, . . . , xd ) :=
∑

T↓µ

∏

(i,j)∈T

(

xT (i,j) − (i − j)
)

.



Sketch of the proof of Christandl, König, Mitchison, and

Renner

Proof.
It then follows that

ωλ(pµ ⊗ 1ln−k) =
#{paths φ→ λ via µ}

#{paths φ→ λ}

= d(µ) · s∗µ(λ1 . . . , λd)

n(n − 1) · · · (n − k + 1)

= d(µ) ·
∑

T↓µ

∏

(i,j)∈µ
(

xT (i,j) − (i − j)
)

n(n − 1) · · · (n − k + 1)

n→∞
−→ d(µ) ·

∑

T↓µ

∏

(i,j)∈µ

λT (i,j)

n

= sµ
(λ1

n
, . . . ,

λd

n

)

= tr
(

π(pµ)π
′(ρλ)

)

= ρ
⊗n
λ

(

π(pµ)
)

.



Extendable states from n = 3 to n = 12

r

r


