1 Truncated Lie algebras

Fifth lecture on Singer and Sternberg’s 1965 paper [1], by Bas Janssens.

1.1 Introduction

Let V be a finite dimensional vector space. On the bosonic Fock space $S(V)$, we define the creation operator for $v \in V$ by $a_B^*(v) : u \mapsto v \vee u$ and the annihilation operator for $\alpha \in V^*$ by $a_B(\alpha) : u \mapsto i_\alpha u$ (contraction with α). Similarly, we define creation and annihilation operators on the fermionic Fock space V. Its homology is called the Spencer homology which is a finitely generated V-module. We have seen before that this is equivalent to $S(V)^* \otimes \Lambda(V)$, hence it is a finitely generated V^*-module. Since $\text{ann}(\mathfrak{g}) = S(V)^* \otimes W^* / \text{ann}(\mathfrak{g})$ is a finitely generated $S(V)$-module. Since $[\partial^*, a_B^*(v)] = 0$, the kernel $\text{Ker}(\partial^*) \subseteq \mathfrak{g}^* \otimes \Lambda V$ is an $S(V)$-submodule of a finitely generated $S(V)$-module, hence finitely generated itself by the Hilbert Basis Theorem. But $a_B^*(V) \text{Ker}(\partial^*) \subseteq \text{Im}(\partial^*)$ because $\{\partial^*, a_B^*(v)\} = a_B^*(v)$, so $\text{Ker}(\partial^*) / \text{Im}(\partial^*)$ is not only finitely generated, but even finite dimensional.

\[
\partial^* = \sum_i a_B^*(e_i) \otimes a_F(\epsilon^i)
\]

where (e_1, \ldots, e_n) is a basis of V and $(\epsilon^1, \ldots, \epsilon^n)$ the dual basis of V^*. Explicitly, it satisfies

\[
\partial^*(u_1 \vee \ldots \vee u_k) \otimes (v_1 \wedge \ldots \wedge v_l) = \sum_{j=1}^l (-1)^j (v_j \vee u_1 \vee \ldots \vee u_k) \otimes (v_1 \wedge \ldots \hat{v}_j \ldots \wedge v_l).
\]

Using the $[a_B(\alpha), a_B^*(v)] = \alpha(v) 1$ (CCR) and $\{a_F(\alpha), a_B^*(v)\} = \alpha(v) 1$ (CAR), one verifies the following commutation relations.

Proposition 1.1. We have $[\partial^*, a_B^*(v)] = 0$ and $\{\partial^*, a_F^*(v)\} = a_B^*(v)$.

Let W be a finite dimensional vector space. We continue to denote by ∂^* the extension of ∂^* to $S(V) \otimes W^* \otimes \Lambda V$ by ∂^* and we denote its dual on $\mathfrak{g}^* \otimes W \otimes \Lambda V^*$ by ∂. Let $\mathfrak{g} \subseteq \mathfrak{g}^* \otimes W \otimes \Lambda V^*$ be a graded subspace such that $\text{ann}(\mathfrak{g}) \subseteq S(V) \otimes W^*$ is a $S(V)$-module. We have seen before that this is equivalent to $\mathfrak{g} \subseteq \text{pro}(\mathfrak{g})$ for all k. In this case, the operator ∂ restricts to $\mathfrak{g} \otimes \Lambda V \subseteq S(V^*) \otimes W \otimes \Lambda V$. Its homology is called the Spencer homology of \mathfrak{g}.

Theorem 1.2. The Spencer homology is finite dimensional.

Proof. The Spencer homology is dual to the cohomology of the operator ∂^* on $\mathfrak{g}^* \otimes \Lambda V$. Since $\text{ann}(\mathfrak{g})$ is an $S(V)$-module, the quotient $\mathfrak{g}^* = S(V)^* \otimes W^* / \text{ann}(\mathfrak{g})$ is a finitely generated $S(V)$-module. Since $[\partial^*, a_B^*(v)] = 0$, the kernel $\text{Ker}(\partial^*) \subseteq \mathfrak{g}^* \otimes \Lambda V$ is an $S(V)$-submodule of a finitely generated $S(V)$-module, hence finitely generated itself by the Hilbert Basis Theorem. But $a_B^*(V) \text{Ker}(\partial^*) \subseteq \text{Im}(\partial^*)$ because $\{\partial^*, a_B^*(v)\} = a_B^*(v)$, so $\text{Ker}(\partial^*) / \text{Im}(\partial^*)$ is not only finitely generated, but even finite dimensional.
References